Metamath Proof Explorer


Theorem hdmap1eq

Description: The defining equation for h(x,x',y)=y' in part (2) in Baer p. 45 line 24. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h
|- H = ( LHyp ` K )
hdmap1val2.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1val2.v
|- V = ( Base ` U )
hdmap1val2.s
|- .- = ( -g ` U )
hdmap1val2.o
|- .0. = ( 0g ` U )
hdmap1val2.n
|- N = ( LSpan ` U )
hdmap1val2.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1val2.d
|- D = ( Base ` C )
hdmap1val2.r
|- R = ( -g ` C )
hdmap1val2.l
|- L = ( LSpan ` C )
hdmap1val2.m
|- M = ( ( mapd ` K ) ` W )
hdmap1val2.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1val2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1eq.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1eq.f
|- ( ph -> F e. D )
hdmap1eq.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap1eq.g
|- ( ph -> G e. D )
hdmap1eq.e
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
hdmap1eq.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
Assertion hdmap1eq
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1val2.h
 |-  H = ( LHyp ` K )
2 hdmap1val2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1val2.v
 |-  V = ( Base ` U )
4 hdmap1val2.s
 |-  .- = ( -g ` U )
5 hdmap1val2.o
 |-  .0. = ( 0g ` U )
6 hdmap1val2.n
 |-  N = ( LSpan ` U )
7 hdmap1val2.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap1val2.d
 |-  D = ( Base ` C )
9 hdmap1val2.r
 |-  R = ( -g ` C )
10 hdmap1val2.l
 |-  L = ( LSpan ` C )
11 hdmap1val2.m
 |-  M = ( ( mapd ` K ) ` W )
12 hdmap1val2.i
 |-  I = ( ( HDMap1 ` K ) ` W )
13 hdmap1val2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 hdmap1eq.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
15 hdmap1eq.f
 |-  ( ph -> F e. D )
16 hdmap1eq.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
17 hdmap1eq.g
 |-  ( ph -> G e. D )
18 hdmap1eq.e
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
19 hdmap1eq.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 14 eldifad
 |-  ( ph -> X e. V )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16 hdmap1val2
 |-  ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) )
22 21 eqeq1d
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) )
23 1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19 mapdpg
 |-  ( ph -> E! h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) )
24 nfv
 |-  F/ h ph
25 nfcvd
 |-  ( ph -> F/_ h G )
26 nfvd
 |-  ( ph -> F/ h ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) )
27 sneq
 |-  ( h = G -> { h } = { G } )
28 27 fveq2d
 |-  ( h = G -> ( L ` { h } ) = ( L ` { G } ) )
29 28 eqeq2d
 |-  ( h = G -> ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) ) )
30 oveq2
 |-  ( h = G -> ( F R h ) = ( F R G ) )
31 30 sneqd
 |-  ( h = G -> { ( F R h ) } = { ( F R G ) } )
32 31 fveq2d
 |-  ( h = G -> ( L ` { ( F R h ) } ) = ( L ` { ( F R G ) } ) )
33 32 eqeq2d
 |-  ( h = G -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) )
34 29 33 anbi12d
 |-  ( h = G -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) )
35 34 adantl
 |-  ( ( ph /\ h = G ) -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) )
36 24 25 26 17 35 riota2df
 |-  ( ( ph /\ E! h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) )
37 23 36 mpdan
 |-  ( ph -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) )
38 22 37 bitr4d
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) )