| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1val2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap1val2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap1val2.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap1val2.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | hdmap1val2.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmap1val2.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | hdmap1val2.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hdmap1val2.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | hdmap1val2.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | hdmap1val2.l |  |-  L = ( LSpan ` C ) | 
						
							| 11 |  | hdmap1val2.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 12 |  | hdmap1val2.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 13 |  | hdmap1val2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 14 |  | hdmap1eq.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 15 |  | hdmap1eq.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | hdmap1eq.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 17 |  | hdmap1eq.g |  |-  ( ph -> G e. D ) | 
						
							| 18 |  | hdmap1eq.e |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 19 |  | hdmap1eq.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 20 | 14 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16 | hdmap1val2 |  |-  ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) ) | 
						
							| 23 | 1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19 | mapdpg |  |-  ( ph -> E! h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) | 
						
							| 24 |  | nfv |  |-  F/ h ph | 
						
							| 25 |  | nfcvd |  |-  ( ph -> F/_ h G ) | 
						
							| 26 |  | nfvd |  |-  ( ph -> F/ h ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) | 
						
							| 27 |  | sneq |  |-  ( h = G -> { h } = { G } ) | 
						
							| 28 | 27 | fveq2d |  |-  ( h = G -> ( L ` { h } ) = ( L ` { G } ) ) | 
						
							| 29 | 28 | eqeq2d |  |-  ( h = G -> ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( h = G -> ( F R h ) = ( F R G ) ) | 
						
							| 31 | 30 | sneqd |  |-  ( h = G -> { ( F R h ) } = { ( F R G ) } ) | 
						
							| 32 | 31 | fveq2d |  |-  ( h = G -> ( L ` { ( F R h ) } ) = ( L ` { ( F R G ) } ) ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( h = G -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) | 
						
							| 34 | 29 33 | anbi12d |  |-  ( h = G -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ h = G ) -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) | 
						
							| 36 | 24 25 26 17 35 | riota2df |  |-  ( ( ph /\ E! h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) ) | 
						
							| 37 | 23 36 | mpdan |  |-  ( ph -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) ) | 
						
							| 38 | 22 37 | bitr4d |  |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) |