Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val2.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1val2.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1val2.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1val2.s |
|- .- = ( -g ` U ) |
5 |
|
hdmap1val2.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap1val2.n |
|- N = ( LSpan ` U ) |
7 |
|
hdmap1val2.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap1val2.d |
|- D = ( Base ` C ) |
9 |
|
hdmap1val2.r |
|- R = ( -g ` C ) |
10 |
|
hdmap1val2.l |
|- L = ( LSpan ` C ) |
11 |
|
hdmap1val2.m |
|- M = ( ( mapd ` K ) ` W ) |
12 |
|
hdmap1val2.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
13 |
|
hdmap1val2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
hdmap1eq.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
15 |
|
hdmap1eq.f |
|- ( ph -> F e. D ) |
16 |
|
hdmap1eq.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
17 |
|
hdmap1eq.g |
|- ( ph -> G e. D ) |
18 |
|
hdmap1eq.e |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
19 |
|
hdmap1eq.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
20 |
14
|
eldifad |
|- ( ph -> X e. V ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16
|
hdmap1val2 |
|- ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) |
22 |
21
|
eqeq1d |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) ) |
23 |
1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19
|
mapdpg |
|- ( ph -> E! h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) |
24 |
|
nfv |
|- F/ h ph |
25 |
|
nfcvd |
|- ( ph -> F/_ h G ) |
26 |
|
nfvd |
|- ( ph -> F/ h ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) |
27 |
|
sneq |
|- ( h = G -> { h } = { G } ) |
28 |
27
|
fveq2d |
|- ( h = G -> ( L ` { h } ) = ( L ` { G } ) ) |
29 |
28
|
eqeq2d |
|- ( h = G -> ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) ) ) |
30 |
|
oveq2 |
|- ( h = G -> ( F R h ) = ( F R G ) ) |
31 |
30
|
sneqd |
|- ( h = G -> { ( F R h ) } = { ( F R G ) } ) |
32 |
31
|
fveq2d |
|- ( h = G -> ( L ` { ( F R h ) } ) = ( L ` { ( F R G ) } ) ) |
33 |
32
|
eqeq2d |
|- ( h = G -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) |
34 |
29 33
|
anbi12d |
|- ( h = G -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) |
35 |
34
|
adantl |
|- ( ( ph /\ h = G ) -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) |
36 |
24 25 26 17 35
|
riota2df |
|- ( ( ph /\ E! h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) ) |
37 |
23 36
|
mpdan |
|- ( ph -> ( ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) <-> ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) = G ) ) |
38 |
22 37
|
bitr4d |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) |