Metamath Proof Explorer


Theorem hdmap1val2

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero Y . (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h
|- H = ( LHyp ` K )
hdmap1val2.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1val2.v
|- V = ( Base ` U )
hdmap1val2.s
|- .- = ( -g ` U )
hdmap1val2.o
|- .0. = ( 0g ` U )
hdmap1val2.n
|- N = ( LSpan ` U )
hdmap1val2.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1val2.d
|- D = ( Base ` C )
hdmap1val2.r
|- R = ( -g ` C )
hdmap1val2.l
|- L = ( LSpan ` C )
hdmap1val2.m
|- M = ( ( mapd ` K ) ` W )
hdmap1val2.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1val2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1val2.x
|- ( ph -> X e. V )
hdmap1val2.f
|- ( ph -> F e. D )
hdmap1val2.y
|- ( ph -> Y e. ( V \ { .0. } ) )
Assertion hdmap1val2
|- ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1val2.h
 |-  H = ( LHyp ` K )
2 hdmap1val2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1val2.v
 |-  V = ( Base ` U )
4 hdmap1val2.s
 |-  .- = ( -g ` U )
5 hdmap1val2.o
 |-  .0. = ( 0g ` U )
6 hdmap1val2.n
 |-  N = ( LSpan ` U )
7 hdmap1val2.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap1val2.d
 |-  D = ( Base ` C )
9 hdmap1val2.r
 |-  R = ( -g ` C )
10 hdmap1val2.l
 |-  L = ( LSpan ` C )
11 hdmap1val2.m
 |-  M = ( ( mapd ` K ) ` W )
12 hdmap1val2.i
 |-  I = ( ( HDMap1 ` K ) ` W )
13 hdmap1val2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 hdmap1val2.x
 |-  ( ph -> X e. V )
15 hdmap1val2.f
 |-  ( ph -> F e. D )
16 hdmap1val2.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
17 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
18 16 eldifad
 |-  ( ph -> Y e. V )
19 1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18 hdmap1val
 |-  ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) )
20 eldifsni
 |-  ( Y e. ( V \ { .0. } ) -> Y =/= .0. )
21 20 neneqd
 |-  ( Y e. ( V \ { .0. } ) -> -. Y = .0. )
22 iffalse
 |-  ( -. Y = .0. -> if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) )
23 16 21 22 3syl
 |-  ( ph -> if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) )
24 19 23 eqtrd
 |-  ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) )