| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1val2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap1val2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap1val2.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap1val2.s |
|- .- = ( -g ` U ) |
| 5 |
|
hdmap1val2.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
hdmap1val2.n |
|- N = ( LSpan ` U ) |
| 7 |
|
hdmap1val2.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
hdmap1val2.d |
|- D = ( Base ` C ) |
| 9 |
|
hdmap1val2.r |
|- R = ( -g ` C ) |
| 10 |
|
hdmap1val2.l |
|- L = ( LSpan ` C ) |
| 11 |
|
hdmap1val2.m |
|- M = ( ( mapd ` K ) ` W ) |
| 12 |
|
hdmap1val2.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
| 13 |
|
hdmap1val2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
hdmap1val2.x |
|- ( ph -> X e. V ) |
| 15 |
|
hdmap1val2.f |
|- ( ph -> F e. D ) |
| 16 |
|
hdmap1val2.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 17 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
| 18 |
16
|
eldifad |
|- ( ph -> Y e. V ) |
| 19 |
1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18
|
hdmap1val |
|- ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) ) |
| 20 |
|
eldifsni |
|- ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) |
| 21 |
20
|
neneqd |
|- ( Y e. ( V \ { .0. } ) -> -. Y = .0. ) |
| 22 |
|
iffalse |
|- ( -. Y = .0. -> if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) |
| 23 |
16 21 22
|
3syl |
|- ( ph -> if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) |
| 24 |
19 23
|
eqtrd |
|- ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) |