| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1val2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap1val2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap1val2.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap1val2.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | hdmap1val2.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmap1val2.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | hdmap1val2.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hdmap1val2.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | hdmap1val2.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | hdmap1val2.l |  |-  L = ( LSpan ` C ) | 
						
							| 11 |  | hdmap1val2.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 12 |  | hdmap1val2.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 13 |  | hdmap1val2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 14 |  | hdmap1val2.x |  |-  ( ph -> X e. V ) | 
						
							| 15 |  | hdmap1val2.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | hdmap1val2.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 18 | 16 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18 | hdmap1val |  |-  ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) ) | 
						
							| 20 |  | eldifsni |  |-  ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) | 
						
							| 21 | 20 | neneqd |  |-  ( Y e. ( V \ { .0. } ) -> -. Y = .0. ) | 
						
							| 22 |  | iffalse |  |-  ( -. Y = .0. -> if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) | 
						
							| 23 | 16 21 22 | 3syl |  |-  ( ph -> if ( Y = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) | 
						
							| 24 | 19 23 | eqtrd |  |-  ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R h ) } ) ) ) ) |