Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1fval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1fval.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1fval.s |
|- .- = ( -g ` U ) |
5 |
|
hdmap1fval.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap1fval.n |
|- N = ( LSpan ` U ) |
7 |
|
hdmap1fval.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap1fval.d |
|- D = ( Base ` C ) |
9 |
|
hdmap1fval.r |
|- R = ( -g ` C ) |
10 |
|
hdmap1fval.q |
|- Q = ( 0g ` C ) |
11 |
|
hdmap1fval.j |
|- J = ( LSpan ` C ) |
12 |
|
hdmap1fval.m |
|- M = ( ( mapd ` K ) ` W ) |
13 |
|
hdmap1fval.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
14 |
|
hdmap1fval.k |
|- ( ph -> ( K e. A /\ W e. H ) ) |
15 |
|
hdmap1val.x |
|- ( ph -> X e. V ) |
16 |
|
hdmap1val.f |
|- ( ph -> F e. D ) |
17 |
|
hdmap1val.y |
|- ( ph -> Y e. V ) |
18 |
|
df-ot |
|- <. X , F , Y >. = <. <. X , F >. , Y >. |
19 |
|
opelxp |
|- ( <. X , F >. e. ( V X. D ) <-> ( X e. V /\ F e. D ) ) |
20 |
15 16 19
|
sylanbrc |
|- ( ph -> <. X , F >. e. ( V X. D ) ) |
21 |
|
opelxp |
|- ( <. <. X , F >. , Y >. e. ( ( V X. D ) X. V ) <-> ( <. X , F >. e. ( V X. D ) /\ Y e. V ) ) |
22 |
20 17 21
|
sylanbrc |
|- ( ph -> <. <. X , F >. , Y >. e. ( ( V X. D ) X. V ) ) |
23 |
18 22
|
eqeltrid |
|- ( ph -> <. X , F , Y >. e. ( ( V X. D ) X. V ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 23
|
hdmap1vallem |
|- ( ph -> ( I ` <. X , F , Y >. ) = if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) ) |
25 |
|
ot3rdg |
|- ( Y e. V -> ( 2nd ` <. X , F , Y >. ) = Y ) |
26 |
17 25
|
syl |
|- ( ph -> ( 2nd ` <. X , F , Y >. ) = Y ) |
27 |
26
|
eqeq1d |
|- ( ph -> ( ( 2nd ` <. X , F , Y >. ) = .0. <-> Y = .0. ) ) |
28 |
26
|
sneqd |
|- ( ph -> { ( 2nd ` <. X , F , Y >. ) } = { Y } ) |
29 |
28
|
fveq2d |
|- ( ph -> ( N ` { ( 2nd ` <. X , F , Y >. ) } ) = ( N ` { Y } ) ) |
30 |
29
|
fveqeq2d |
|- ( ph -> ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( J ` { h } ) ) ) |
31 |
|
ot1stg |
|- ( ( X e. V /\ F e. D /\ Y e. V ) -> ( 1st ` ( 1st ` <. X , F , Y >. ) ) = X ) |
32 |
15 16 17 31
|
syl3anc |
|- ( ph -> ( 1st ` ( 1st ` <. X , F , Y >. ) ) = X ) |
33 |
32 26
|
oveq12d |
|- ( ph -> ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) = ( X .- Y ) ) |
34 |
33
|
sneqd |
|- ( ph -> { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } = { ( X .- Y ) } ) |
35 |
34
|
fveq2d |
|- ( ph -> ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) = ( N ` { ( X .- Y ) } ) ) |
36 |
35
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( M ` ( N ` { ( X .- Y ) } ) ) ) |
37 |
|
ot2ndg |
|- ( ( X e. V /\ F e. D /\ Y e. V ) -> ( 2nd ` ( 1st ` <. X , F , Y >. ) ) = F ) |
38 |
15 16 17 37
|
syl3anc |
|- ( ph -> ( 2nd ` ( 1st ` <. X , F , Y >. ) ) = F ) |
39 |
38
|
oveq1d |
|- ( ph -> ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) = ( F R h ) ) |
40 |
39
|
sneqd |
|- ( ph -> { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } = { ( F R h ) } ) |
41 |
40
|
fveq2d |
|- ( ph -> ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) = ( J ` { ( F R h ) } ) ) |
42 |
36 41
|
eqeq12d |
|- ( ph -> ( ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) |
43 |
30 42
|
anbi12d |
|- ( ph -> ( ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) |
44 |
43
|
riotabidv |
|- ( ph -> ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) |
45 |
27 44
|
ifbieq2d |
|- ( ph -> if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) ) |
46 |
24 45
|
eqtrd |
|- ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) ) |