Metamath Proof Explorer


Theorem hdmap1val

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval .) TODO: change I = ( x e. _V |-> ... to ( ph -> ( I<. X , F , Y > ) = ... in e.g. mapdh8 to shorten proofs with no $d on x . (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1val.h
|- H = ( LHyp ` K )
hdmap1fval.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1fval.v
|- V = ( Base ` U )
hdmap1fval.s
|- .- = ( -g ` U )
hdmap1fval.o
|- .0. = ( 0g ` U )
hdmap1fval.n
|- N = ( LSpan ` U )
hdmap1fval.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1fval.d
|- D = ( Base ` C )
hdmap1fval.r
|- R = ( -g ` C )
hdmap1fval.q
|- Q = ( 0g ` C )
hdmap1fval.j
|- J = ( LSpan ` C )
hdmap1fval.m
|- M = ( ( mapd ` K ) ` W )
hdmap1fval.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1fval.k
|- ( ph -> ( K e. A /\ W e. H ) )
hdmap1val.x
|- ( ph -> X e. V )
hdmap1val.f
|- ( ph -> F e. D )
hdmap1val.y
|- ( ph -> Y e. V )
Assertion hdmap1val
|- ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1val.h
 |-  H = ( LHyp ` K )
2 hdmap1fval.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1fval.v
 |-  V = ( Base ` U )
4 hdmap1fval.s
 |-  .- = ( -g ` U )
5 hdmap1fval.o
 |-  .0. = ( 0g ` U )
6 hdmap1fval.n
 |-  N = ( LSpan ` U )
7 hdmap1fval.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap1fval.d
 |-  D = ( Base ` C )
9 hdmap1fval.r
 |-  R = ( -g ` C )
10 hdmap1fval.q
 |-  Q = ( 0g ` C )
11 hdmap1fval.j
 |-  J = ( LSpan ` C )
12 hdmap1fval.m
 |-  M = ( ( mapd ` K ) ` W )
13 hdmap1fval.i
 |-  I = ( ( HDMap1 ` K ) ` W )
14 hdmap1fval.k
 |-  ( ph -> ( K e. A /\ W e. H ) )
15 hdmap1val.x
 |-  ( ph -> X e. V )
16 hdmap1val.f
 |-  ( ph -> F e. D )
17 hdmap1val.y
 |-  ( ph -> Y e. V )
18 df-ot
 |-  <. X , F , Y >. = <. <. X , F >. , Y >.
19 opelxp
 |-  ( <. X , F >. e. ( V X. D ) <-> ( X e. V /\ F e. D ) )
20 15 16 19 sylanbrc
 |-  ( ph -> <. X , F >. e. ( V X. D ) )
21 opelxp
 |-  ( <. <. X , F >. , Y >. e. ( ( V X. D ) X. V ) <-> ( <. X , F >. e. ( V X. D ) /\ Y e. V ) )
22 20 17 21 sylanbrc
 |-  ( ph -> <. <. X , F >. , Y >. e. ( ( V X. D ) X. V ) )
23 18 22 eqeltrid
 |-  ( ph -> <. X , F , Y >. e. ( ( V X. D ) X. V ) )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 23 hdmap1vallem
 |-  ( ph -> ( I ` <. X , F , Y >. ) = if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) )
25 ot3rdg
 |-  ( Y e. V -> ( 2nd ` <. X , F , Y >. ) = Y )
26 17 25 syl
 |-  ( ph -> ( 2nd ` <. X , F , Y >. ) = Y )
27 26 eqeq1d
 |-  ( ph -> ( ( 2nd ` <. X , F , Y >. ) = .0. <-> Y = .0. ) )
28 26 sneqd
 |-  ( ph -> { ( 2nd ` <. X , F , Y >. ) } = { Y } )
29 28 fveq2d
 |-  ( ph -> ( N ` { ( 2nd ` <. X , F , Y >. ) } ) = ( N ` { Y } ) )
30 29 fveqeq2d
 |-  ( ph -> ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( J ` { h } ) ) )
31 ot1stg
 |-  ( ( X e. V /\ F e. D /\ Y e. V ) -> ( 1st ` ( 1st ` <. X , F , Y >. ) ) = X )
32 15 16 17 31 syl3anc
 |-  ( ph -> ( 1st ` ( 1st ` <. X , F , Y >. ) ) = X )
33 32 26 oveq12d
 |-  ( ph -> ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) = ( X .- Y ) )
34 33 sneqd
 |-  ( ph -> { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } = { ( X .- Y ) } )
35 34 fveq2d
 |-  ( ph -> ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) = ( N ` { ( X .- Y ) } ) )
36 35 fveq2d
 |-  ( ph -> ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( M ` ( N ` { ( X .- Y ) } ) ) )
37 ot2ndg
 |-  ( ( X e. V /\ F e. D /\ Y e. V ) -> ( 2nd ` ( 1st ` <. X , F , Y >. ) ) = F )
38 15 16 17 37 syl3anc
 |-  ( ph -> ( 2nd ` ( 1st ` <. X , F , Y >. ) ) = F )
39 38 oveq1d
 |-  ( ph -> ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) = ( F R h ) )
40 39 sneqd
 |-  ( ph -> { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } = { ( F R h ) } )
41 40 fveq2d
 |-  ( ph -> ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) = ( J ` { ( F R h ) } ) )
42 36 41 eqeq12d
 |-  ( ph -> ( ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) )
43 30 42 anbi12d
 |-  ( ph -> ( ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) )
44 43 riotabidv
 |-  ( ph -> ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) )
45 27 44 ifbieq2d
 |-  ( ph -> if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) )
46 24 45 eqtrd
 |-  ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) )