Metamath Proof Explorer


Theorem hdmap1val0

Description: Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 .) (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap1val0.h
|- H = ( LHyp ` K )
hdmap1val0.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1val0.v
|- V = ( Base ` U )
hdmap1val0.o
|- .0. = ( 0g ` U )
hdmap1val0.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1val0.d
|- D = ( Base ` C )
hdmap1val0.q
|- Q = ( 0g ` C )
hdmap1val0.s
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1val0.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1val0.f
|- ( ph -> F e. D )
hdmap1val0.x
|- ( ph -> X e. V )
Assertion hdmap1val0
|- ( ph -> ( I ` <. X , F , .0. >. ) = Q )

Proof

Step Hyp Ref Expression
1 hdmap1val0.h
 |-  H = ( LHyp ` K )
2 hdmap1val0.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1val0.v
 |-  V = ( Base ` U )
4 hdmap1val0.o
 |-  .0. = ( 0g ` U )
5 hdmap1val0.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmap1val0.d
 |-  D = ( Base ` C )
7 hdmap1val0.q
 |-  Q = ( 0g ` C )
8 hdmap1val0.s
 |-  I = ( ( HDMap1 ` K ) ` W )
9 hdmap1val0.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hdmap1val0.f
 |-  ( ph -> F e. D )
11 hdmap1val0.x
 |-  ( ph -> X e. V )
12 eqid
 |-  ( -g ` U ) = ( -g ` U )
13 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
14 eqid
 |-  ( -g ` C ) = ( -g ` C )
15 eqid
 |-  ( LSpan ` C ) = ( LSpan ` C )
16 eqid
 |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W )
17 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
18 3 4 lmod0vcl
 |-  ( U e. LMod -> .0. e. V )
19 17 18 syl
 |-  ( ph -> .0. e. V )
20 1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19 hdmap1val
 |-  ( ph -> ( I ` <. X , F , .0. >. ) = if ( .0. = .0. , Q , ( iota_ h e. D ( ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { .0. } ) ) = ( ( LSpan ` C ) ` { h } ) /\ ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( X ( -g ` U ) .0. ) } ) ) = ( ( LSpan ` C ) ` { ( F ( -g ` C ) h ) } ) ) ) ) )
21 eqid
 |-  .0. = .0.
22 21 iftruei
 |-  if ( .0. = .0. , Q , ( iota_ h e. D ( ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { .0. } ) ) = ( ( LSpan ` C ) ` { h } ) /\ ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( X ( -g ` U ) .0. ) } ) ) = ( ( LSpan ` C ) ` { ( F ( -g ` C ) h ) } ) ) ) ) = Q
23 20 22 eqtrdi
 |-  ( ph -> ( I ` <. X , F , .0. >. ) = Q )