Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val0.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1val0.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1val0.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1val0.o |
|- .0. = ( 0g ` U ) |
5 |
|
hdmap1val0.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmap1val0.d |
|- D = ( Base ` C ) |
7 |
|
hdmap1val0.q |
|- Q = ( 0g ` C ) |
8 |
|
hdmap1val0.s |
|- I = ( ( HDMap1 ` K ) ` W ) |
9 |
|
hdmap1val0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmap1val0.f |
|- ( ph -> F e. D ) |
11 |
|
hdmap1val0.x |
|- ( ph -> X e. V ) |
12 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
13 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
14 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
15 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
16 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
17 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
3 4
|
lmod0vcl |
|- ( U e. LMod -> .0. e. V ) |
19 |
17 18
|
syl |
|- ( ph -> .0. e. V ) |
20 |
1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19
|
hdmap1val |
|- ( ph -> ( I ` <. X , F , .0. >. ) = if ( .0. = .0. , Q , ( iota_ h e. D ( ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { .0. } ) ) = ( ( LSpan ` C ) ` { h } ) /\ ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( X ( -g ` U ) .0. ) } ) ) = ( ( LSpan ` C ) ` { ( F ( -g ` C ) h ) } ) ) ) ) ) |
21 |
|
eqid |
|- .0. = .0. |
22 |
21
|
iftruei |
|- if ( .0. = .0. , Q , ( iota_ h e. D ( ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { .0. } ) ) = ( ( LSpan ` C ) ` { h } ) /\ ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { ( X ( -g ` U ) .0. ) } ) ) = ( ( LSpan ` C ) ` { ( F ( -g ` C ) h ) } ) ) ) ) = Q |
23 |
20 22
|
eqtrdi |
|- ( ph -> ( I ` <. X , F , .0. >. ) = Q ) |