Metamath Proof Explorer


Theorem hdmap1val0

Description: Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 .) (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap1val0.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1val0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val0.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1val0.o 0 = ( 0g𝑈 )
hdmap1val0.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val0.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1val0.q 𝑄 = ( 0g𝐶 )
hdmap1val0.s 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1val0.f ( 𝜑𝐹𝐷 )
hdmap1val0.x ( 𝜑𝑋𝑉 )
Assertion hdmap1val0 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 hdmap1val0.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1val0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1val0.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1val0.o 0 = ( 0g𝑈 )
5 hdmap1val0.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmap1val0.d 𝐷 = ( Base ‘ 𝐶 )
7 hdmap1val0.q 𝑄 = ( 0g𝐶 )
8 hdmap1val0.s 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap1val0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmap1val0.f ( 𝜑𝐹𝐷 )
11 hdmap1val0.x ( 𝜑𝑋𝑉 )
12 eqid ( -g𝑈 ) = ( -g𝑈 )
13 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
14 eqid ( -g𝐶 ) = ( -g𝐶 )
15 eqid ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 )
16 eqid ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
17 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 3 4 lmod0vcl ( 𝑈 ∈ LMod → 0𝑉 )
19 17 18 syl ( 𝜑0𝑉 )
20 1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19 hdmap1val ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = if ( 0 = 0 , 𝑄 , ( 𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 0 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g𝑈 ) 0 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g𝐶 ) ) } ) ) ) ) )
21 eqid 0 = 0
22 21 iftruei if ( 0 = 0 , 𝑄 , ( 𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 0 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g𝑈 ) 0 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g𝐶 ) ) } ) ) ) ) = 𝑄
23 20 22 eqtrdi ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = 𝑄 )