| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1val0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1val0.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1val0.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1val0.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1val0.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmap1val0.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | hdmap1val0.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 8 |  | hdmap1val0.s | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmap1val0.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmap1val0.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 11 |  | hdmap1val0.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 13 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 14 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 15 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 16 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 18 | 3 4 | lmod0vcl | ⊢ ( 𝑈  ∈  LMod  →   0   ∈  𝑉 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →   0   ∈  𝑉 ) | 
						
							| 20 | 1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19 | hdmap1val | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,   0  〉 )  =  if (  0   =   0  ,  𝑄 ,  ( ℩ ℎ  ∈  𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ {  0  } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ℎ } )  ∧  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g ‘ 𝑈 )  0  ) } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) | 
						
							| 21 |  | eqid | ⊢  0   =   0 | 
						
							| 22 | 21 | iftruei | ⊢ if (  0   =   0  ,  𝑄 ,  ( ℩ ℎ  ∈  𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ {  0  } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ℎ } )  ∧  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g ‘ 𝑈 )  0  ) } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g ‘ 𝐶 ) ℎ ) } ) ) ) )  =  𝑄 | 
						
							| 23 | 20 22 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,   0  〉 )  =  𝑄 ) |