| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1val0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmap1val0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmap1val0.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmap1val0.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 5 |
|
hdmap1val0.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
hdmap1val0.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 7 |
|
hdmap1val0.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 8 |
|
hdmap1val0.s |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmap1val0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
hdmap1val0.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 11 |
|
hdmap1val0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 12 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
| 13 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 14 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
| 15 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
| 16 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 17 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 18 |
3 4
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → 0 ∈ 𝑉 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
| 20 |
1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19
|
hdmap1val |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = if ( 0 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 0 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ℎ } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g ‘ 𝑈 ) 0 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) |
| 21 |
|
eqid |
⊢ 0 = 0 |
| 22 |
21
|
iftruei |
⊢ if ( 0 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 0 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ℎ } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g ‘ 𝑈 ) 0 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) = 𝑄 |
| 23 |
20 22
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = 𝑄 ) |