Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1val0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1val0.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1val0.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
hdmap1val0.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap1val0.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
7 |
|
hdmap1val0.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
8 |
|
hdmap1val0.s |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmap1val0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmap1val0.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
11 |
|
hdmap1val0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
3 4
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → 0 ∈ 𝑉 ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
20 |
1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19
|
hdmap1val |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = if ( 0 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 0 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ℎ } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g ‘ 𝑈 ) 0 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) |
21 |
|
eqid |
⊢ 0 = 0 |
22 |
21
|
iftruei |
⊢ if ( 0 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 0 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ℎ } ) ∧ ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝑋 ( -g ‘ 𝑈 ) 0 ) } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐹 ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) = 𝑄 |
23 |
20 22
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = 𝑄 ) |