Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1val2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1val2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1val2.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
hdmap1val2.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hdmap1val2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
hdmap1val2.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap1val2.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
hdmap1val2.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
hdmap1val2.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
11 |
|
hdmap1val2.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
hdmap1val2.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap1val2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
hdmap1val2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
|
hdmap1val2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
hdmap1val2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
18 |
16
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
19 |
1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18
|
hdmap1val |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( 𝑌 = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) |
20 |
|
eldifsni |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) |
21 |
20
|
neneqd |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → ¬ 𝑌 = 0 ) |
22 |
|
iffalse |
⊢ ( ¬ 𝑌 = 0 → if ( 𝑌 = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
23 |
16 21 22
|
3syl |
⊢ ( 𝜑 → if ( 𝑌 = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
24 |
19 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |