Metamath Proof Explorer


Theorem hdmap1val2

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero Y . (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1val2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1val2.s = ( -g𝑈 )
hdmap1val2.o 0 = ( 0g𝑈 )
hdmap1val2.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1val2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1val2.r 𝑅 = ( -g𝐶 )
hdmap1val2.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1val2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1val2.x ( 𝜑𝑋𝑉 )
hdmap1val2.f ( 𝜑𝐹𝐷 )
hdmap1val2.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion hdmap1val2 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1val2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1val2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1val2.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1val2.s = ( -g𝑈 )
5 hdmap1val2.o 0 = ( 0g𝑈 )
6 hdmap1val2.n 𝑁 = ( LSpan ‘ 𝑈 )
7 hdmap1val2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap1val2.d 𝐷 = ( Base ‘ 𝐶 )
9 hdmap1val2.r 𝑅 = ( -g𝐶 )
10 hdmap1val2.l 𝐿 = ( LSpan ‘ 𝐶 )
11 hdmap1val2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
12 hdmap1val2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
13 hdmap1val2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 hdmap1val2.x ( 𝜑𝑋𝑉 )
15 hdmap1val2.f ( 𝜑𝐹𝐷 )
16 hdmap1val2.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
17 eqid ( 0g𝐶 ) = ( 0g𝐶 )
18 16 eldifad ( 𝜑𝑌𝑉 )
19 1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18 hdmap1val ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = if ( 𝑌 = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) ) )
20 eldifsni ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌0 )
21 20 neneqd ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → ¬ 𝑌 = 0 )
22 iffalse ( ¬ 𝑌 = 0 → if ( 𝑌 = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) ) = ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) )
23 16 21 22 3syl ( 𝜑 → if ( 𝑌 = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) ) = ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) )
24 19 23 eqtrd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) )