| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1val2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1val2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1val2.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1val2.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1val2.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap1val2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | hdmap1val2.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap1val2.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 9 |  | hdmap1val2.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 10 |  | hdmap1val2.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 11 |  | hdmap1val2.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 12 |  | hdmap1val2.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | hdmap1val2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | hdmap1val2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 15 |  | hdmap1val2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 16 |  | hdmap1val2.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 18 | 16 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18 | hdmap1val | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  if ( 𝑌  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) | 
						
							| 20 |  | eldifsni | ⊢ ( 𝑌  ∈  ( 𝑉  ∖  {  0  } )  →  𝑌  ≠   0  ) | 
						
							| 21 | 20 | neneqd | ⊢ ( 𝑌  ∈  ( 𝑉  ∖  {  0  } )  →  ¬  𝑌  =   0  ) | 
						
							| 22 |  | iffalse | ⊢ ( ¬  𝑌  =   0   →  if ( 𝑌  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) )  =  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) | 
						
							| 23 | 16 21 22 | 3syl | ⊢ ( 𝜑  →  if ( 𝑌  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) )  =  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) | 
						
							| 24 | 19 23 | eqtrd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |