Metamath Proof Explorer


Theorem hdmap1eq

Description: The defining equation for h(x,x',y)=y' in part (2) in Baer p. 45 line 24. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1val2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1val2.s = ( -g𝑈 )
hdmap1val2.o 0 = ( 0g𝑈 )
hdmap1val2.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1val2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1val2.r 𝑅 = ( -g𝐶 )
hdmap1val2.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1val2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1val2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1eq.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq.f ( 𝜑𝐹𝐷 )
hdmap1eq.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq.g ( 𝜑𝐺𝐷 )
hdmap1eq.e ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
hdmap1eq.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
Assertion hdmap1eq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1val2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1val2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1val2.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1val2.s = ( -g𝑈 )
5 hdmap1val2.o 0 = ( 0g𝑈 )
6 hdmap1val2.n 𝑁 = ( LSpan ‘ 𝑈 )
7 hdmap1val2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap1val2.d 𝐷 = ( Base ‘ 𝐶 )
9 hdmap1val2.r 𝑅 = ( -g𝐶 )
10 hdmap1val2.l 𝐿 = ( LSpan ‘ 𝐶 )
11 hdmap1val2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
12 hdmap1val2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
13 hdmap1val2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 hdmap1eq.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
15 hdmap1eq.f ( 𝜑𝐹𝐷 )
16 hdmap1eq.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
17 hdmap1eq.g ( 𝜑𝐺𝐷 )
18 hdmap1eq.e ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
19 hdmap1eq.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
20 14 eldifad ( 𝜑𝑋𝑉 )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16 hdmap1val2 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) )
22 21 eqeq1d ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 ↔ ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) = 𝐺 ) )
23 1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19 mapdpg ( 𝜑 → ∃! 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) )
24 nfv 𝜑
25 nfcvd ( 𝜑 𝐺 )
26 nfvd ( 𝜑 → Ⅎ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) )
27 sneq ( = 𝐺 → { } = { 𝐺 } )
28 27 fveq2d ( = 𝐺 → ( 𝐿 ‘ { } ) = ( 𝐿 ‘ { 𝐺 } ) )
29 28 eqeq2d ( = 𝐺 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ) )
30 oveq2 ( = 𝐺 → ( 𝐹 𝑅 ) = ( 𝐹 𝑅 𝐺 ) )
31 30 sneqd ( = 𝐺 → { ( 𝐹 𝑅 ) } = { ( 𝐹 𝑅 𝐺 ) } )
32 31 fveq2d ( = 𝐺 → ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) )
33 32 eqeq2d ( = 𝐺 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) )
34 29 33 anbi12d ( = 𝐺 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )
35 34 adantl ( ( 𝜑 = 𝐺 ) → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )
36 24 25 26 17 35 riota2df ( ( 𝜑 ∧ ∃! 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ↔ ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) = 𝐺 ) )
37 23 36 mpdan ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ↔ ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ) } ) ) ) = 𝐺 ) )
38 22 37 bitr4d ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )