| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1val2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1val2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1val2.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1val2.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1val2.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap1val2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | hdmap1val2.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap1val2.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 9 |  | hdmap1val2.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 10 |  | hdmap1val2.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 11 |  | hdmap1val2.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 12 |  | hdmap1val2.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | hdmap1val2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | hdmap1eq.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | hdmap1eq.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 16 |  | hdmap1eq.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | hdmap1eq.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐷 ) | 
						
							| 18 |  | hdmap1eq.e | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 19 |  | hdmap1eq.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 20 | 14 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16 | hdmap1val2 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺  ↔  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) )  =  𝐺 ) ) | 
						
							| 23 | 1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19 | mapdpg | ⊢ ( 𝜑  →  ∃! ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ ℎ 𝜑 | 
						
							| 25 |  | nfcvd | ⊢ ( 𝜑  →  Ⅎ ℎ 𝐺 ) | 
						
							| 26 |  | nfvd | ⊢ ( 𝜑  →  Ⅎ ℎ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) | 
						
							| 27 |  | sneq | ⊢ ( ℎ  =  𝐺  →  { ℎ }  =  { 𝐺 } ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ℎ  =  𝐺  →  ( 𝐿 ‘ { ℎ } )  =  ( 𝐿 ‘ { 𝐺 } ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( ℎ  =  𝐺  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ↔  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } ) ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( ℎ  =  𝐺  →  ( 𝐹 𝑅 ℎ )  =  ( 𝐹 𝑅 𝐺 ) ) | 
						
							| 31 | 30 | sneqd | ⊢ ( ℎ  =  𝐺  →  { ( 𝐹 𝑅 ℎ ) }  =  { ( 𝐹 𝑅 𝐺 ) } ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ℎ  =  𝐺  →  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( ℎ  =  𝐺  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } )  ↔  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) | 
						
							| 34 | 29 33 | anbi12d | ⊢ ( ℎ  =  𝐺  →  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) )  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  ℎ  =  𝐺 )  →  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) )  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) | 
						
							| 36 | 24 25 26 17 35 | riota2df | ⊢ ( ( 𝜑  ∧  ∃! ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) )  →  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) )  ↔  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) )  =  𝐺 ) ) | 
						
							| 37 | 23 36 | mpdan | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) )  ↔  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) )  =  𝐺 ) ) | 
						
							| 38 | 22 37 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐿 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) |