Metamath Proof Explorer


Theorem hdmap1vallem

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1val.h H=LHypK
hdmap1fval.u U=DVecHKW
hdmap1fval.v V=BaseU
hdmap1fval.s -˙=-U
hdmap1fval.o 0˙=0U
hdmap1fval.n N=LSpanU
hdmap1fval.c C=LCDualKW
hdmap1fval.d D=BaseC
hdmap1fval.r R=-C
hdmap1fval.q Q=0C
hdmap1fval.j J=LSpanC
hdmap1fval.m M=mapdKW
hdmap1fval.i I=HDMap1KW
hdmap1fval.k φKAWH
hdmap1val.t φTV×D×V
Assertion hdmap1vallem φIT=if2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh

Proof

Step Hyp Ref Expression
1 hdmap1val.h H=LHypK
2 hdmap1fval.u U=DVecHKW
3 hdmap1fval.v V=BaseU
4 hdmap1fval.s -˙=-U
5 hdmap1fval.o 0˙=0U
6 hdmap1fval.n N=LSpanU
7 hdmap1fval.c C=LCDualKW
8 hdmap1fval.d D=BaseC
9 hdmap1fval.r R=-C
10 hdmap1fval.q Q=0C
11 hdmap1fval.j J=LSpanC
12 hdmap1fval.m M=mapdKW
13 hdmap1fval.i I=HDMap1KW
14 hdmap1fval.k φKAWH
15 hdmap1val.t φTV×D×V
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 hdmap1fval φI=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
17 16 fveq1d φIT=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhT
18 10 fvexi QV
19 riotaex ιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRhV
20 18 19 ifex if2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRhV
21 fveqeq2 x=T2ndx=0˙2ndT=0˙
22 fveq2 x=T2ndx=2ndT
23 22 sneqd x=T2ndx=2ndT
24 23 fveq2d x=TN2ndx=N2ndT
25 24 fveqeq2d x=TMN2ndx=JhMN2ndT=Jh
26 2fveq3 x=T1st1stx=1st1stT
27 26 22 oveq12d x=T1st1stx-˙2ndx=1st1stT-˙2ndT
28 27 sneqd x=T1st1stx-˙2ndx=1st1stT-˙2ndT
29 28 fveq2d x=TN1st1stx-˙2ndx=N1st1stT-˙2ndT
30 29 fveq2d x=TMN1st1stx-˙2ndx=MN1st1stT-˙2ndT
31 2fveq3 x=T2nd1stx=2nd1stT
32 31 oveq1d x=T2nd1stxRh=2nd1stTRh
33 32 sneqd x=T2nd1stxRh=2nd1stTRh
34 33 fveq2d x=TJ2nd1stxRh=J2nd1stTRh
35 30 34 eqeq12d x=TMN1st1stx-˙2ndx=J2nd1stxRhMN1st1stT-˙2ndT=J2nd1stTRh
36 25 35 anbi12d x=TMN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhMN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh
37 36 riotabidv x=TιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=ιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh
38 21 37 ifbieq2d x=Tif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=if2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh
39 eqid xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
40 38 39 fvmptg TV×D×Vif2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRhVxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhT=if2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh
41 15 20 40 sylancl φxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhT=if2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh
42 17 41 eqtrd φIT=if2ndT=0˙QιhD|MN2ndT=JhMN1st1stT-˙2ndT=J2nd1stTRh