Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1l6.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1l6.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1l6.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1l6.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmap1l6.s |
|- .- = ( -g ` U ) |
6 |
|
hdmap1l6c.o |
|- .0. = ( 0g ` U ) |
7 |
|
hdmap1l6.n |
|- N = ( LSpan ` U ) |
8 |
|
hdmap1l6.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hdmap1l6.d |
|- D = ( Base ` C ) |
10 |
|
hdmap1l6.a |
|- .+b = ( +g ` C ) |
11 |
|
hdmap1l6.r |
|- R = ( -g ` C ) |
12 |
|
hdmap1l6.q |
|- Q = ( 0g ` C ) |
13 |
|
hdmap1l6.l |
|- L = ( LSpan ` C ) |
14 |
|
hdmap1l6.m |
|- M = ( ( mapd ` K ) ` W ) |
15 |
|
hdmap1l6.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
16 |
|
hdmap1l6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap1l6.f |
|- ( ph -> F e. D ) |
18 |
|
hdmap1l6cl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
19 |
|
hdmap1l6.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
20 |
|
hdmap1l6k.y |
|- ( ph -> Y e. V ) |
21 |
|
hdmap1l6k.z |
|- ( ph -> Z e. V ) |
22 |
|
hdmap1l6k.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
23 |
16
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( K e. HL /\ W e. H ) ) |
24 |
17
|
adantr |
|- ( ( ph /\ Y = .0. ) -> F e. D ) |
25 |
18
|
adantr |
|- ( ( ph /\ Y = .0. ) -> X e. ( V \ { .0. } ) ) |
26 |
19
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
27 |
|
simpr |
|- ( ( ph /\ Y = .0. ) -> Y = .0. ) |
28 |
21
|
adantr |
|- ( ( ph /\ Y = .0. ) -> Z e. V ) |
29 |
22
|
adantr |
|- ( ( ph /\ Y = .0. ) -> -. X e. ( N ` { Y , Z } ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29
|
hdmap1l6b |
|- ( ( ph /\ Y = .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |
31 |
16
|
adantr |
|- ( ( ph /\ Z = .0. ) -> ( K e. HL /\ W e. H ) ) |
32 |
17
|
adantr |
|- ( ( ph /\ Z = .0. ) -> F e. D ) |
33 |
18
|
adantr |
|- ( ( ph /\ Z = .0. ) -> X e. ( V \ { .0. } ) ) |
34 |
19
|
adantr |
|- ( ( ph /\ Z = .0. ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
35 |
20
|
adantr |
|- ( ( ph /\ Z = .0. ) -> Y e. V ) |
36 |
|
simpr |
|- ( ( ph /\ Z = .0. ) -> Z = .0. ) |
37 |
22
|
adantr |
|- ( ( ph /\ Z = .0. ) -> -. X e. ( N ` { Y , Z } ) ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 32 33 34 35 36 37
|
hdmap1l6c |
|- ( ( ph /\ Z = .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |
39 |
16
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> ( K e. HL /\ W e. H ) ) |
40 |
17
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> F e. D ) |
41 |
18
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> X e. ( V \ { .0. } ) ) |
42 |
19
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
43 |
22
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> -. X e. ( N ` { Y , Z } ) ) |
44 |
20
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Y e. V ) |
45 |
|
simprl |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Y =/= .0. ) |
46 |
|
eldifsn |
|- ( Y e. ( V \ { .0. } ) <-> ( Y e. V /\ Y =/= .0. ) ) |
47 |
44 45 46
|
sylanbrc |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Y e. ( V \ { .0. } ) ) |
48 |
21
|
adantr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Z e. V ) |
49 |
|
simprr |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Z =/= .0. ) |
50 |
|
eldifsn |
|- ( Z e. ( V \ { .0. } ) <-> ( Z e. V /\ Z =/= .0. ) ) |
51 |
48 49 50
|
sylanbrc |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Z e. ( V \ { .0. } ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 39 40 41 42 43 47 51
|
hdmap1l6j |
|- ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |
53 |
30 38 52
|
pm2.61da2ne |
|- ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |