| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1l6.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap1l6.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap1l6.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap1l6.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap1l6.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | hdmap1l6c.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap1l6.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap1l6.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hdmap1l6.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hdmap1l6.a |  |-  .+b = ( +g ` C ) | 
						
							| 11 |  | hdmap1l6.r |  |-  R = ( -g ` C ) | 
						
							| 12 |  | hdmap1l6.q |  |-  Q = ( 0g ` C ) | 
						
							| 13 |  | hdmap1l6.l |  |-  L = ( LSpan ` C ) | 
						
							| 14 |  | hdmap1l6.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 15 |  | hdmap1l6.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 16 |  | hdmap1l6.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap1l6.f |  |-  ( ph -> F e. D ) | 
						
							| 18 |  | hdmap1l6cl.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap1l6.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 20 |  | hdmap1l6k.y |  |-  ( ph -> Y e. V ) | 
						
							| 21 |  | hdmap1l6k.z |  |-  ( ph -> Z e. V ) | 
						
							| 22 |  | hdmap1l6k.xn |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 23 | 16 | adantr |  |-  ( ( ph /\ Y = .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 24 | 17 | adantr |  |-  ( ( ph /\ Y = .0. ) -> F e. D ) | 
						
							| 25 | 18 | adantr |  |-  ( ( ph /\ Y = .0. ) -> X e. ( V \ { .0. } ) ) | 
						
							| 26 | 19 | adantr |  |-  ( ( ph /\ Y = .0. ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ Y = .0. ) -> Y = .0. ) | 
						
							| 28 | 21 | adantr |  |-  ( ( ph /\ Y = .0. ) -> Z e. V ) | 
						
							| 29 | 22 | adantr |  |-  ( ( ph /\ Y = .0. ) -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29 | hdmap1l6b |  |-  ( ( ph /\ Y = .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) | 
						
							| 31 | 16 | adantr |  |-  ( ( ph /\ Z = .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 32 | 17 | adantr |  |-  ( ( ph /\ Z = .0. ) -> F e. D ) | 
						
							| 33 | 18 | adantr |  |-  ( ( ph /\ Z = .0. ) -> X e. ( V \ { .0. } ) ) | 
						
							| 34 | 19 | adantr |  |-  ( ( ph /\ Z = .0. ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 35 | 20 | adantr |  |-  ( ( ph /\ Z = .0. ) -> Y e. V ) | 
						
							| 36 |  | simpr |  |-  ( ( ph /\ Z = .0. ) -> Z = .0. ) | 
						
							| 37 | 22 | adantr |  |-  ( ( ph /\ Z = .0. ) -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 32 33 34 35 36 37 | hdmap1l6c |  |-  ( ( ph /\ Z = .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) | 
						
							| 39 | 16 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 40 | 17 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> F e. D ) | 
						
							| 41 | 18 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 42 | 19 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 43 | 22 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 44 | 20 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Y e. V ) | 
						
							| 45 |  | simprl |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Y =/= .0. ) | 
						
							| 46 |  | eldifsn |  |-  ( Y e. ( V \ { .0. } ) <-> ( Y e. V /\ Y =/= .0. ) ) | 
						
							| 47 | 44 45 46 | sylanbrc |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 48 | 21 | adantr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Z e. V ) | 
						
							| 49 |  | simprr |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Z =/= .0. ) | 
						
							| 50 |  | eldifsn |  |-  ( Z e. ( V \ { .0. } ) <-> ( Z e. V /\ Z =/= .0. ) ) | 
						
							| 51 | 48 49 50 | sylanbrc |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> Z e. ( V \ { .0. } ) ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 39 40 41 42 43 47 51 | hdmap1l6j |  |-  ( ( ph /\ ( Y =/= .0. /\ Z =/= .0. ) ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) | 
						
							| 53 | 30 38 52 | pm2.61da2ne |  |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |