Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1l6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1l6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1l6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1l6.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmap1l6.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
hdmap1l6c.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
hdmap1l6.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
hdmap1l6.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmap1l6.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
10 |
|
hdmap1l6.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
11 |
|
hdmap1l6.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
12 |
|
hdmap1l6.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
13 |
|
hdmap1l6.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
14 |
|
hdmap1l6.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hdmap1l6.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
hdmap1l6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
hdmap1l6.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
18 |
|
hdmap1l6cl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
hdmap1l6.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
20 |
|
hdmap1l6k.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
21 |
|
hdmap1l6k.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
22 |
|
hdmap1l6k.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
23 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝐹 ∈ 𝐷 ) |
25 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
26 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) |
28 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑍 ∈ 𝑉 ) |
29 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29
|
hdmap1l6b |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |
31 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
32 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝐹 ∈ 𝐷 ) |
33 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
34 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
35 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝑌 ∈ 𝑉 ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝑍 = 0 ) |
37 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 32 33 34 35 36 37
|
hdmap1l6c |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |
39 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
40 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝐹 ∈ 𝐷 ) |
41 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
42 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
43 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
44 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑌 ∈ 𝑉 ) |
45 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑌 ≠ 0 ) |
46 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) ) |
47 |
44 45 46
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
48 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ 𝑉 ) |
49 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ≠ 0 ) |
50 |
|
eldifsn |
⊢ ( 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ≠ 0 ) ) |
51 |
48 49 50
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 39 40 41 42 43 47 51
|
hdmap1l6j |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |
53 |
30 38 52
|
pm2.61da2ne |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |