Metamath Proof Explorer


Theorem hdmap1l6c

Description: Lemmma for hdmap1l6 . (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1l6.p + = ( +g𝑈 )
hdmap1l6.s = ( -g𝑈 )
hdmap1l6c.o 0 = ( 0g𝑈 )
hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1l6.a = ( +g𝐶 )
hdmap1l6.r 𝑅 = ( -g𝐶 )
hdmap1l6.q 𝑄 = ( 0g𝐶 )
hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1l6.f ( 𝜑𝐹𝐷 )
hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1l6c.y ( 𝜑𝑌𝑉 )
hdmap1l6c.z ( 𝜑𝑍 = 0 )
hdmap1l6c.ne ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
Assertion hdmap1l6c ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1l6.p + = ( +g𝑈 )
5 hdmap1l6.s = ( -g𝑈 )
6 hdmap1l6c.o 0 = ( 0g𝑈 )
7 hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
8 hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
10 hdmap1l6.a = ( +g𝐶 )
11 hdmap1l6.r 𝑅 = ( -g𝐶 )
12 hdmap1l6.q 𝑄 = ( 0g𝐶 )
13 hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
14 hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
15 hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap1l6.f ( 𝜑𝐹𝐷 )
18 hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
20 hdmap1l6c.y ( 𝜑𝑌𝑉 )
21 hdmap1l6c.z ( 𝜑𝑍 = 0 )
22 hdmap1l6c.ne ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
23 1 8 16 lcdlmod ( 𝜑𝐶 ∈ LMod )
24 lmodgrp ( 𝐶 ∈ LMod → 𝐶 ∈ Grp )
25 23 24 syl ( 𝜑𝐶 ∈ Grp )
26 1 2 16 dvhlvec ( 𝜑𝑈 ∈ LVec )
27 18 eldifad ( 𝜑𝑋𝑉 )
28 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
29 3 6 lmod0vcl ( 𝑈 ∈ LMod → 0𝑉 )
30 28 29 syl ( 𝜑0𝑉 )
31 21 30 eqeltrd ( 𝜑𝑍𝑉 )
32 3 7 26 27 20 31 22 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) )
33 32 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
34 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 20 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
35 9 10 12 grprid ( ( 𝐶 ∈ Grp ∧ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 ) → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) 𝑄 ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) )
36 25 34 35 syl2anc ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) 𝑄 ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) )
37 21 oteq3d ( 𝜑 → ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ = ⟨ 𝑋 , 𝐹 , 0 ⟩ )
38 37 fveq2d ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) )
39 1 2 3 6 8 9 12 15 16 17 27 hdmap1val0 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = 𝑄 )
40 38 39 eqtrd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝑄 )
41 40 oveq2d ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) 𝑄 ) )
42 21 oveq2d ( 𝜑 → ( 𝑌 + 𝑍 ) = ( 𝑌 + 0 ) )
43 lmodgrp ( 𝑈 ∈ LMod → 𝑈 ∈ Grp )
44 28 43 syl ( 𝜑𝑈 ∈ Grp )
45 3 4 6 grprid ( ( 𝑈 ∈ Grp ∧ 𝑌𝑉 ) → ( 𝑌 + 0 ) = 𝑌 )
46 44 20 45 syl2anc ( 𝜑 → ( 𝑌 + 0 ) = 𝑌 )
47 42 46 eqtrd ( 𝜑 → ( 𝑌 + 𝑍 ) = 𝑌 )
48 47 oteq3d ( 𝜑 → ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ = ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ )
49 48 fveq2d ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) )
50 36 41 49 3eqtr4rd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )