Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1l6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1l6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1l6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1l6.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmap1l6.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
hdmap1l6c.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
hdmap1l6.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
hdmap1l6.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmap1l6.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
10 |
|
hdmap1l6.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
11 |
|
hdmap1l6.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
12 |
|
hdmap1l6.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
13 |
|
hdmap1l6.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
14 |
|
hdmap1l6.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hdmap1l6.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
hdmap1l6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
hdmap1l6.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
18 |
|
hdmap1l6cl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
hdmap1l6.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
20 |
|
hdmap1l6d.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
21 |
|
hdmap1l6d.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
22 |
|
hdmap1l6d.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
|
hdmap1l6d.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
24 |
|
hdmap1l6d.w |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
25 |
|
hdmap1l6d.wn |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
26 |
1 8 16
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
27 |
1 2 16
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
28 |
24
|
eldifad |
⊢ ( 𝜑 → 𝑤 ∈ 𝑉 ) |
29 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
30 |
22
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
31 |
3 7 27 28 29 30 25
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
32 |
31
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
33 |
32
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
34 |
1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 28
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ∈ 𝐷 ) |
35 |
9 10 12
|
lmod0vrid |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ∈ 𝐷 ) → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ 𝑄 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
36 |
26 34 35
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ 𝑄 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ 𝑄 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
38 |
|
oteq3 |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 = 〈 𝑋 , 𝐹 , 0 〉 ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) ) |
40 |
1 2 3 6 8 9 12 15 16 17 29
|
hdmap1val0 |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = 𝑄 ) |
41 |
39 40
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = 𝑄 ) |
42 |
41
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ 𝑄 ) ) |
43 |
|
oveq2 |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → ( 𝑤 + ( 𝑌 + 𝑍 ) ) = ( 𝑤 + 0 ) ) |
44 |
1 2 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
45 |
3 4 6
|
lmod0vrid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉 ) → ( 𝑤 + 0 ) = 𝑤 ) |
46 |
44 28 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑤 + 0 ) = 𝑤 ) |
47 |
43 46
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑤 + ( 𝑌 + 𝑍 ) ) = 𝑤 ) |
48 |
47
|
oteq3d |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → 〈 𝑋 , 𝐹 , ( 𝑤 + ( 𝑌 + 𝑍 ) ) 〉 = 〈 𝑋 , 𝐹 , 𝑤 〉 ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + ( 𝑌 + 𝑍 ) ) 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
50 |
37 42 49
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + ( 𝑌 + 𝑍 ) ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) ) ) |
51 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
52 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝐹 ∈ 𝐷 ) |
53 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
54 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
55 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
56 |
23
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
57 |
3 4
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
58 |
44 30 56 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
59 |
58
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( ( 𝑌 + 𝑍 ) ∈ 𝑉 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) ) |
60 |
|
eldifsn |
⊢ ( ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑌 + 𝑍 ) ∈ 𝑉 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) ) |
61 |
59 60
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
62 |
3 7 27 29 30 56 20
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
63 |
62
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
64 |
3 4 6 7 27 18 22 23 24 21 63 25
|
mapdindp1 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
65 |
3 4 6 7 27 18 22 23 24 21 63 25
|
mapdindp2 |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑌 + 𝑍 ) } ) ) |
66 |
3 6 7 27 18 58 28 64 65
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , ( 𝑌 + 𝑍 ) } ) ) ) |
67 |
66
|
simprd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , ( 𝑌 + 𝑍 ) } ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , ( 𝑌 + 𝑍 ) } ) ) |
69 |
31
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
70 |
3 6 7 27 24 30 69
|
lspsnne1 |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
71 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
72 |
3 7 71 44 30 56
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
73 |
21
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
74 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
75 |
3 74 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
76 |
44 30 75
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
77 |
74
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
78 |
44 76 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
79 |
71
|
lsmidm |
⊢ ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
80 |
78 79
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
81 |
72 73 80
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
82 |
70 81
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
83 |
3 4 7 44 30 56 28 82
|
lspindp4 |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 , ( 𝑌 + 𝑍 ) } ) ) |
84 |
3 7 27 28 30 58 83
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) ) |
85 |
84
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
87 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
88 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) ) |
89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 51 52 53 54 55 61 68 86 87 88
|
hdmap1l6a |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + ( 𝑌 + 𝑍 ) ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) ) ) |
90 |
50 89
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + ( 𝑌 + 𝑍 ) ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) ) ) |