| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1l6.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1l6.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1l6.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1l6.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1l6.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap1l6c.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | hdmap1l6.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | hdmap1l6.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmap1l6.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hdmap1l6.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 11 |  | hdmap1l6.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 12 |  | hdmap1l6.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 13 |  | hdmap1l6.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 14 |  | hdmap1l6.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmap1l6.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap1l6.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap1l6.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 18 |  | hdmap1l6cl.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hdmap1l6.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 20 |  | hdmap1l6e.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 21 |  | hdmap1l6e.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 22 |  | hdmap1l6e.xn | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 23 |  | hdmap1l6.yz | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 24 |  | hdmap1l6.fg | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺 ) | 
						
							| 25 |  | hdmap1l6.fe | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 )  =  𝐸 ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | hdmap1l6lem2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) )  =  ( 𝐿 ‘ { ( 𝐺  ✚  𝐸 ) } ) ) | 
						
							| 27 | 24 25 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) )  =  ( 𝐺  ✚  𝐸 ) ) | 
						
							| 28 | 27 | sneqd | ⊢ ( 𝜑  →  { ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) }  =  { ( 𝐺  ✚  𝐸 ) } ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) } )  =  ( 𝐿 ‘ { ( 𝐺  ✚  𝐸 ) } ) ) | 
						
							| 30 | 26 29 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) )  =  ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) } ) ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | hdmap1l6lem1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  ( 𝑌  +  𝑍 ) ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺  ✚  𝐸 ) ) } ) ) | 
						
							| 32 | 27 | oveq2d | ⊢ ( 𝜑  →  ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) )  =  ( 𝐹 𝑅 ( 𝐺  ✚  𝐸 ) ) ) | 
						
							| 33 | 32 | sneqd | ⊢ ( 𝜑  →  { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) }  =  { ( 𝐹 𝑅 ( 𝐺  ✚  𝐸 ) ) } ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) } )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺  ✚  𝐸 ) ) } ) ) | 
						
							| 35 | 31 34 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  ( 𝑌  +  𝑍 ) ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) } ) ) | 
						
							| 36 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 37 | 20 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 38 | 21 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 39 | 3 4 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑉 )  →  ( 𝑌  +  𝑍 )  ∈  𝑉 ) | 
						
							| 40 | 36 37 38 39 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌  +  𝑍 )  ∈  𝑉 ) | 
						
							| 41 | 3 4 6 7 36 37 38 23 | lmodindp1 | ⊢ ( 𝜑  →  ( 𝑌  +  𝑍 )  ≠   0  ) | 
						
							| 42 |  | eldifsn | ⊢ ( ( 𝑌  +  𝑍 )  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( ( 𝑌  +  𝑍 )  ∈  𝑉  ∧  ( 𝑌  +  𝑍 )  ≠   0  ) ) | 
						
							| 43 | 40 41 42 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑌  +  𝑍 )  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 44 | 1 8 16 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 45 | 1 2 16 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 46 | 18 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 47 | 3 6 7 45 37 21 46 23 22 | lspindp2 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } )  ∧  ¬  𝑍  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) ) | 
						
							| 48 | 47 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 49 | 1 2 3 6 7 8 9 13 14 15 16 17 19 48 18 37 | hdmap1cl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ∈  𝐷 ) | 
						
							| 50 | 3 6 7 45 20 38 46 23 22 | lspindp1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑍 } )  ∧  ¬  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑍 } ) ) ) | 
						
							| 51 | 50 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 52 | 1 2 3 6 7 8 9 13 14 15 16 17 19 51 18 38 | hdmap1cl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 )  ∈  𝐷 ) | 
						
							| 53 | 9 10 | lmodvacl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ∈  𝐷  ∧  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 )  ∈  𝐷 )  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) )  ∈  𝐷 ) | 
						
							| 54 | 44 49 52 53 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) )  ∈  𝐷 ) | 
						
							| 55 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 56 | 3 55 7 36 37 38 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 57 | 3 4 7 36 37 38 | lspprvacl | ⊢ ( 𝜑  →  ( 𝑌  +  𝑍 )  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 58 | 55 7 36 56 57 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 59 | 3 55 7 36 56 46 | ellspsn5b | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) ) | 
						
							| 60 | 22 59 | mtbid | ⊢ ( 𝜑  →  ¬  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 61 |  | nssne2 | ⊢ ( ( ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  ∧  ¬  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) )  →  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 62 | 58 60 61 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 63 | 62 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 64 | 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 43 54 63 19 | hdmap1eq | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) )  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) )  =  ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  ( 𝑌  +  𝑍 ) ) } ) )  =  ( 𝐿 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) } ) ) ) ) | 
						
							| 65 | 30 35 64 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) |