| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1l6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmap1l6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmap1l6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmap1l6.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 5 |
|
hdmap1l6.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 6 |
|
hdmap1l6c.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
hdmap1l6.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
hdmap1l6.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmap1l6.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 10 |
|
hdmap1l6.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
| 11 |
|
hdmap1l6.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 12 |
|
hdmap1l6.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 13 |
|
hdmap1l6.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 14 |
|
hdmap1l6.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 15 |
|
hdmap1l6.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
|
hdmap1l6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
|
hdmap1l6.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 18 |
|
hdmap1l6cl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 19 |
|
hdmap1l6.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
| 20 |
|
hdmap1l6e.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 21 |
|
hdmap1l6e.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 22 |
|
hdmap1l6e.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 23 |
|
hdmap1l6.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 24 |
|
hdmap1l6.fg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
| 25 |
|
hdmap1l6.fe |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
| 26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
hdmap1l6lem2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐺 ✚ 𝐸 ) } ) ) |
| 27 |
24 25
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) = ( 𝐺 ✚ 𝐸 ) ) |
| 28 |
27
|
sneqd |
⊢ ( 𝜑 → { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } = { ( 𝐺 ✚ 𝐸 ) } ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } ) = ( 𝐿 ‘ { ( 𝐺 ✚ 𝐸 ) } ) ) |
| 30 |
26 29
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } ) ) |
| 31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
hdmap1l6lem1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) ) |
| 32 |
27
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) = ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) ) |
| 33 |
32
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } = { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) ) |
| 35 |
31 34
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } ) ) |
| 36 |
1 2 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 37 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 38 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 39 |
3 4
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
| 40 |
36 37 38 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
| 41 |
3 4 6 7 36 37 38 23
|
lmodindp1 |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ≠ 0 ) |
| 42 |
|
eldifsn |
⊢ ( ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑌 + 𝑍 ) ∈ 𝑉 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) ) |
| 43 |
40 41 42
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 44 |
1 8 16
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 45 |
1 2 16
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 46 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 47 |
3 6 7 45 37 21 46 23 22
|
lspindp2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 48 |
47
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 49 |
1 2 3 6 7 8 9 13 14 15 16 17 19 48 18 37
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
| 50 |
3 6 7 45 20 38 46 23 22
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
| 51 |
50
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 52 |
1 2 3 6 7 8 9 13 14 15 16 17 19 51 18 38
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) |
| 53 |
9 10
|
lmodvacl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ∧ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ∈ 𝐷 ) |
| 54 |
44 49 52 53
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ∈ 𝐷 ) |
| 55 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 56 |
3 55 7 36 37 38
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 57 |
3 4 7 36 37 38
|
lspprvacl |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 58 |
55 7 36 56 57
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 59 |
3 55 7 36 56 46
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 60 |
22 59
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 61 |
|
nssne2 |
⊢ ( ( ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∧ ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 62 |
58 60 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 63 |
62
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
| 64 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 43 54 63 19
|
hdmap1eq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } ) ) ) ) |
| 65 |
30 35 64
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |