Metamath Proof Explorer


Theorem hdmap1l6b0N

Description: Lemmma for hdmap1l6 . (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1l6.p + = ( +g𝑈 )
hdmap1l6.s = ( -g𝑈 )
hdmap1l6c.o 0 = ( 0g𝑈 )
hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1l6.a = ( +g𝐶 )
hdmap1l6.r 𝑅 = ( -g𝐶 )
hdmap1l6.q 𝑄 = ( 0g𝐶 )
hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1l6.f ( 𝜑𝐹𝐷 )
hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1l6b0.y ( 𝜑𝑌𝑉 )
hdmap1l6b0.z ( 𝜑𝑍𝑉 )
hdmap1l6b0.ne ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = { 0 } )
Assertion hdmap1l6b0N ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1l6.p + = ( +g𝑈 )
5 hdmap1l6.s = ( -g𝑈 )
6 hdmap1l6c.o 0 = ( 0g𝑈 )
7 hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
8 hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
10 hdmap1l6.a = ( +g𝐶 )
11 hdmap1l6.r 𝑅 = ( -g𝐶 )
12 hdmap1l6.q 𝑄 = ( 0g𝐶 )
13 hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
14 hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
15 hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap1l6.f ( 𝜑𝐹𝐷 )
18 hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
20 hdmap1l6b0.y ( 𝜑𝑌𝑉 )
21 hdmap1l6b0.z ( 𝜑𝑍𝑉 )
22 hdmap1l6b0.ne ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = { 0 } )
23 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
24 1 2 16 dvhlvec ( 𝜑𝑈 ∈ LVec )
25 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
26 3 23 7 25 20 21 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
27 3 6 7 23 24 26 18 lspdisjb ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = { 0 } ) )
28 22 27 mpbird ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )