Metamath Proof Explorer


Theorem hdmap1l6b0N

Description: Lemmma for hdmap1l6 . (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1l6.h
|- H = ( LHyp ` K )
hdmap1l6.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1l6.v
|- V = ( Base ` U )
hdmap1l6.p
|- .+ = ( +g ` U )
hdmap1l6.s
|- .- = ( -g ` U )
hdmap1l6c.o
|- .0. = ( 0g ` U )
hdmap1l6.n
|- N = ( LSpan ` U )
hdmap1l6.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1l6.d
|- D = ( Base ` C )
hdmap1l6.a
|- .+b = ( +g ` C )
hdmap1l6.r
|- R = ( -g ` C )
hdmap1l6.q
|- Q = ( 0g ` C )
hdmap1l6.l
|- L = ( LSpan ` C )
hdmap1l6.m
|- M = ( ( mapd ` K ) ` W )
hdmap1l6.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1l6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1l6.f
|- ( ph -> F e. D )
hdmap1l6cl.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1l6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
hdmap1l6b0.y
|- ( ph -> Y e. V )
hdmap1l6b0.z
|- ( ph -> Z e. V )
hdmap1l6b0.ne
|- ( ph -> ( ( N ` { X } ) i^i ( N ` { Y , Z } ) ) = { .0. } )
Assertion hdmap1l6b0N
|- ( ph -> -. X e. ( N ` { Y , Z } ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h
 |-  H = ( LHyp ` K )
2 hdmap1l6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1l6.v
 |-  V = ( Base ` U )
4 hdmap1l6.p
 |-  .+ = ( +g ` U )
5 hdmap1l6.s
 |-  .- = ( -g ` U )
6 hdmap1l6c.o
 |-  .0. = ( 0g ` U )
7 hdmap1l6.n
 |-  N = ( LSpan ` U )
8 hdmap1l6.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hdmap1l6.d
 |-  D = ( Base ` C )
10 hdmap1l6.a
 |-  .+b = ( +g ` C )
11 hdmap1l6.r
 |-  R = ( -g ` C )
12 hdmap1l6.q
 |-  Q = ( 0g ` C )
13 hdmap1l6.l
 |-  L = ( LSpan ` C )
14 hdmap1l6.m
 |-  M = ( ( mapd ` K ) ` W )
15 hdmap1l6.i
 |-  I = ( ( HDMap1 ` K ) ` W )
16 hdmap1l6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap1l6.f
 |-  ( ph -> F e. D )
18 hdmap1l6cl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 hdmap1l6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 hdmap1l6b0.y
 |-  ( ph -> Y e. V )
21 hdmap1l6b0.z
 |-  ( ph -> Z e. V )
22 hdmap1l6b0.ne
 |-  ( ph -> ( ( N ` { X } ) i^i ( N ` { Y , Z } ) ) = { .0. } )
23 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
24 1 2 16 dvhlvec
 |-  ( ph -> U e. LVec )
25 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
26 3 23 7 25 20 21 lspprcl
 |-  ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` U ) )
27 3 6 7 23 24 26 18 lspdisjb
 |-  ( ph -> ( -. X e. ( N ` { Y , Z } ) <-> ( ( N ` { X } ) i^i ( N ` { Y , Z } ) ) = { .0. } ) )
28 22 27 mpbird
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )