| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspdisjb.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspdisjb.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspdisjb.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspdisjb.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 5 |
|
lspdisjb.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lspdisjb.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
lspdisjb.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 10 |
7
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → ¬ 𝑋 ∈ 𝑈 ) |
| 13 |
1 2 3 4 8 9 11 12
|
lspdisj |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) |
| 14 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
| 15 |
7 14
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → 𝑋 ≠ 0 ) |
| 17 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 19 |
1 3
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 20 |
18 10 19
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 21 |
|
elin |
⊢ ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑋 ∈ 𝑈 ) ) |
| 22 |
|
eleq2 |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ 𝑋 ∈ { 0 } ) ) |
| 23 |
|
elsni |
⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) |
| 24 |
22 23
|
biimtrdi |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) → 𝑋 = 0 ) ) |
| 25 |
21 24
|
biimtrrid |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 = 0 ) ) |
| 26 |
25
|
expd |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑋 ∈ 𝑈 → 𝑋 = 0 ) ) ) |
| 27 |
20 26
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → ( 𝑋 ∈ 𝑈 → 𝑋 = 0 ) ) |
| 28 |
27
|
necon3ad |
⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → ( 𝑋 ≠ 0 → ¬ 𝑋 ∈ 𝑈 ) ) |
| 29 |
16 28
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → ¬ 𝑋 ∈ 𝑈 ) |
| 30 |
13 29
|
impbida |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑈 ↔ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) ) |