Metamath Proof Explorer


Theorem lspdisj

Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015)

Ref Expression
Hypotheses lspdisj.v 𝑉 = ( Base ‘ 𝑊 )
lspdisj.o 0 = ( 0g𝑊 )
lspdisj.n 𝑁 = ( LSpan ‘ 𝑊 )
lspdisj.s 𝑆 = ( LSubSp ‘ 𝑊 )
lspdisj.w ( 𝜑𝑊 ∈ LVec )
lspdisj.u ( 𝜑𝑈𝑆 )
lspdisj.x ( 𝜑𝑋𝑉 )
lspdisj.e ( 𝜑 → ¬ 𝑋𝑈 )
Assertion lspdisj ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } )

Proof

Step Hyp Ref Expression
1 lspdisj.v 𝑉 = ( Base ‘ 𝑊 )
2 lspdisj.o 0 = ( 0g𝑊 )
3 lspdisj.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspdisj.s 𝑆 = ( LSubSp ‘ 𝑊 )
5 lspdisj.w ( 𝜑𝑊 ∈ LVec )
6 lspdisj.u ( 𝜑𝑈𝑆 )
7 lspdisj.x ( 𝜑𝑋𝑉 )
8 lspdisj.e ( 𝜑 → ¬ 𝑋𝑈 )
9 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
10 5 9 syl ( 𝜑𝑊 ∈ LMod )
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
13 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
14 11 12 1 13 3 lspsnel ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) )
15 10 7 14 syl2anc ( 𝜑 → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) )
16 15 biimpa ( ( 𝜑𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) )
17 16 adantrr ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣𝑈 ) ) → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) )
18 simprr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) )
19 8 ad2antrr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ¬ 𝑋𝑈 )
20 simplr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑣𝑈 )
21 18 20 eqeltrrd ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ∈ 𝑈 )
22 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
23 5 ad2antrr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑊 ∈ LVec )
24 6 ad2antrr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑈𝑆 )
25 7 ad2antrr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑋𝑉 )
26 simprl ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
27 1 13 11 12 22 4 23 24 25 26 lssvs0or ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ∈ 𝑈 ↔ ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋𝑈 ) ) )
28 21 27 mpbid ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋𝑈 ) )
29 28 orcomd ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( 𝑋𝑈𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
30 29 ord ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( ¬ 𝑋𝑈𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
31 19 30 mpd ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
32 31 oveq1d ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) )
33 10 ad2antrr ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑊 ∈ LMod )
34 1 11 13 22 2 lmod0vs ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) = 0 )
35 33 25 34 syl2anc ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) = 0 )
36 18 32 35 3eqtrd ( ( ( 𝜑𝑣𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ) → 𝑣 = 0 )
37 36 exp32 ( ( 𝜑𝑣𝑈 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) )
38 37 adantrl ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣𝑈 ) ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) )
39 38 rexlimdv ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣𝑈 ) ) → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) → 𝑣 = 0 ) )
40 17 39 mpd ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣𝑈 ) ) → 𝑣 = 0 )
41 40 ex ( 𝜑 → ( ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣𝑈 ) → 𝑣 = 0 ) )
42 elin ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣𝑈 ) )
43 velsn ( 𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
44 41 42 43 3imtr4g ( 𝜑 → ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) → 𝑣 ∈ { 0 } ) )
45 44 ssrdv ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ⊆ { 0 } )
46 1 4 3 lspsncl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 )
47 10 7 46 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 )
48 2 4 lss0ss ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) → { 0 } ⊆ ( 𝑁 ‘ { 𝑋 } ) )
49 10 47 48 syl2anc ( 𝜑 → { 0 } ⊆ ( 𝑁 ‘ { 𝑋 } ) )
50 2 4 lss0ss ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → { 0 } ⊆ 𝑈 )
51 10 6 50 syl2anc ( 𝜑 → { 0 } ⊆ 𝑈 )
52 49 51 ssind ( 𝜑 → { 0 } ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) )
53 45 52 eqssd ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } )