Metamath Proof Explorer


Theorem lspdisj

Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015)

Ref Expression
Hypotheses lspdisj.v V = Base W
lspdisj.o 0 ˙ = 0 W
lspdisj.n N = LSpan W
lspdisj.s S = LSubSp W
lspdisj.w φ W LVec
lspdisj.u φ U S
lspdisj.x φ X V
lspdisj.e φ ¬ X U
Assertion lspdisj φ N X U = 0 ˙

Proof

Step Hyp Ref Expression
1 lspdisj.v V = Base W
2 lspdisj.o 0 ˙ = 0 W
3 lspdisj.n N = LSpan W
4 lspdisj.s S = LSubSp W
5 lspdisj.w φ W LVec
6 lspdisj.u φ U S
7 lspdisj.x φ X V
8 lspdisj.e φ ¬ X U
9 lveclmod W LVec W LMod
10 5 9 syl φ W LMod
11 eqid Scalar W = Scalar W
12 eqid Base Scalar W = Base Scalar W
13 eqid W = W
14 11 12 1 13 3 lspsnel W LMod X V v N X k Base Scalar W v = k W X
15 10 7 14 syl2anc φ v N X k Base Scalar W v = k W X
16 15 biimpa φ v N X k Base Scalar W v = k W X
17 16 adantrr φ v N X v U k Base Scalar W v = k W X
18 simprr φ v U k Base Scalar W v = k W X v = k W X
19 8 ad2antrr φ v U k Base Scalar W v = k W X ¬ X U
20 simplr φ v U k Base Scalar W v = k W X v U
21 18 20 eqeltrrd φ v U k Base Scalar W v = k W X k W X U
22 eqid 0 Scalar W = 0 Scalar W
23 5 ad2antrr φ v U k Base Scalar W v = k W X W LVec
24 6 ad2antrr φ v U k Base Scalar W v = k W X U S
25 7 ad2antrr φ v U k Base Scalar W v = k W X X V
26 simprl φ v U k Base Scalar W v = k W X k Base Scalar W
27 1 13 11 12 22 4 23 24 25 26 lssvs0or φ v U k Base Scalar W v = k W X k W X U k = 0 Scalar W X U
28 21 27 mpbid φ v U k Base Scalar W v = k W X k = 0 Scalar W X U
29 28 orcomd φ v U k Base Scalar W v = k W X X U k = 0 Scalar W
30 29 ord φ v U k Base Scalar W v = k W X ¬ X U k = 0 Scalar W
31 19 30 mpd φ v U k Base Scalar W v = k W X k = 0 Scalar W
32 31 oveq1d φ v U k Base Scalar W v = k W X k W X = 0 Scalar W W X
33 10 ad2antrr φ v U k Base Scalar W v = k W X W LMod
34 1 11 13 22 2 lmod0vs W LMod X V 0 Scalar W W X = 0 ˙
35 33 25 34 syl2anc φ v U k Base Scalar W v = k W X 0 Scalar W W X = 0 ˙
36 18 32 35 3eqtrd φ v U k Base Scalar W v = k W X v = 0 ˙
37 36 exp32 φ v U k Base Scalar W v = k W X v = 0 ˙
38 37 adantrl φ v N X v U k Base Scalar W v = k W X v = 0 ˙
39 38 rexlimdv φ v N X v U k Base Scalar W v = k W X v = 0 ˙
40 17 39 mpd φ v N X v U v = 0 ˙
41 40 ex φ v N X v U v = 0 ˙
42 elin v N X U v N X v U
43 velsn v 0 ˙ v = 0 ˙
44 41 42 43 3imtr4g φ v N X U v 0 ˙
45 44 ssrdv φ N X U 0 ˙
46 1 4 3 lspsncl W LMod X V N X S
47 10 7 46 syl2anc φ N X S
48 2 4 lss0ss W LMod N X S 0 ˙ N X
49 10 47 48 syl2anc φ 0 ˙ N X
50 2 4 lss0ss W LMod U S 0 ˙ U
51 10 6 50 syl2anc φ 0 ˙ U
52 49 51 ssind φ 0 ˙ N X U
53 45 52 eqssd φ N X U = 0 ˙