Metamath Proof Explorer


Theorem hdmap1l6a

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, case 1. (Contributed by NM, 23-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h
|- H = ( LHyp ` K )
hdmap1l6.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1l6.v
|- V = ( Base ` U )
hdmap1l6.p
|- .+ = ( +g ` U )
hdmap1l6.s
|- .- = ( -g ` U )
hdmap1l6c.o
|- .0. = ( 0g ` U )
hdmap1l6.n
|- N = ( LSpan ` U )
hdmap1l6.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1l6.d
|- D = ( Base ` C )
hdmap1l6.a
|- .+b = ( +g ` C )
hdmap1l6.r
|- R = ( -g ` C )
hdmap1l6.q
|- Q = ( 0g ` C )
hdmap1l6.l
|- L = ( LSpan ` C )
hdmap1l6.m
|- M = ( ( mapd ` K ) ` W )
hdmap1l6.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1l6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1l6.f
|- ( ph -> F e. D )
hdmap1l6cl.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1l6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
hdmap1l6e.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap1l6e.z
|- ( ph -> Z e. ( V \ { .0. } ) )
hdmap1l6e.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
hdmap1l6.yz
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
hdmap1l6.fg
|- ( ph -> ( I ` <. X , F , Y >. ) = G )
hdmap1l6.fe
|- ( ph -> ( I ` <. X , F , Z >. ) = E )
Assertion hdmap1l6a
|- ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h
 |-  H = ( LHyp ` K )
2 hdmap1l6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1l6.v
 |-  V = ( Base ` U )
4 hdmap1l6.p
 |-  .+ = ( +g ` U )
5 hdmap1l6.s
 |-  .- = ( -g ` U )
6 hdmap1l6c.o
 |-  .0. = ( 0g ` U )
7 hdmap1l6.n
 |-  N = ( LSpan ` U )
8 hdmap1l6.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hdmap1l6.d
 |-  D = ( Base ` C )
10 hdmap1l6.a
 |-  .+b = ( +g ` C )
11 hdmap1l6.r
 |-  R = ( -g ` C )
12 hdmap1l6.q
 |-  Q = ( 0g ` C )
13 hdmap1l6.l
 |-  L = ( LSpan ` C )
14 hdmap1l6.m
 |-  M = ( ( mapd ` K ) ` W )
15 hdmap1l6.i
 |-  I = ( ( HDMap1 ` K ) ` W )
16 hdmap1l6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap1l6.f
 |-  ( ph -> F e. D )
18 hdmap1l6cl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 hdmap1l6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 hdmap1l6e.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
21 hdmap1l6e.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
22 hdmap1l6e.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
23 hdmap1l6.yz
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
24 hdmap1l6.fg
 |-  ( ph -> ( I ` <. X , F , Y >. ) = G )
25 hdmap1l6.fe
 |-  ( ph -> ( I ` <. X , F , Z >. ) = E )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem2
 |-  ( ph -> ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( L ` { ( G .+b E ) } ) )
27 24 25 oveq12d
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) = ( G .+b E ) )
28 27 sneqd
 |-  ( ph -> { ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) } = { ( G .+b E ) } )
29 28 fveq2d
 |-  ( ph -> ( L ` { ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) } ) = ( L ` { ( G .+b E ) } ) )
30 26 29 eqtr4d
 |-  ( ph -> ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( L ` { ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) } ) )
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem1
 |-  ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( G .+b E ) ) } ) )
32 27 oveq2d
 |-  ( ph -> ( F R ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) = ( F R ( G .+b E ) ) )
33 32 sneqd
 |-  ( ph -> { ( F R ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) } = { ( F R ( G .+b E ) ) } )
34 33 fveq2d
 |-  ( ph -> ( L ` { ( F R ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) } ) = ( L ` { ( F R ( G .+b E ) ) } ) )
35 31 34 eqtr4d
 |-  ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) } ) )
36 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
37 20 eldifad
 |-  ( ph -> Y e. V )
38 21 eldifad
 |-  ( ph -> Z e. V )
39 3 4 lmodvacl
 |-  ( ( U e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V )
40 36 37 38 39 syl3anc
 |-  ( ph -> ( Y .+ Z ) e. V )
41 3 4 6 7 36 37 38 23 lmodindp1
 |-  ( ph -> ( Y .+ Z ) =/= .0. )
42 eldifsn
 |-  ( ( Y .+ Z ) e. ( V \ { .0. } ) <-> ( ( Y .+ Z ) e. V /\ ( Y .+ Z ) =/= .0. ) )
43 40 41 42 sylanbrc
 |-  ( ph -> ( Y .+ Z ) e. ( V \ { .0. } ) )
44 1 8 16 lcdlmod
 |-  ( ph -> C e. LMod )
45 1 2 16 dvhlvec
 |-  ( ph -> U e. LVec )
46 18 eldifad
 |-  ( ph -> X e. V )
47 3 6 7 45 37 21 46 23 22 lspindp2
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) )
48 47 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
49 1 2 3 6 7 8 9 13 14 15 16 17 19 48 18 37 hdmap1cl
 |-  ( ph -> ( I ` <. X , F , Y >. ) e. D )
50 3 6 7 45 20 38 46 23 22 lspindp1
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) )
51 50 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) )
52 1 2 3 6 7 8 9 13 14 15 16 17 19 51 18 38 hdmap1cl
 |-  ( ph -> ( I ` <. X , F , Z >. ) e. D )
53 9 10 lmodvacl
 |-  ( ( C e. LMod /\ ( I ` <. X , F , Y >. ) e. D /\ ( I ` <. X , F , Z >. ) e. D ) -> ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) e. D )
54 44 49 52 53 syl3anc
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) e. D )
55 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
56 3 55 7 36 37 38 lspprcl
 |-  ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` U ) )
57 3 4 7 36 37 38 lspprvacl
 |-  ( ph -> ( Y .+ Z ) e. ( N ` { Y , Z } ) )
58 55 7 36 56 57 lspsnel5a
 |-  ( ph -> ( N ` { ( Y .+ Z ) } ) C_ ( N ` { Y , Z } ) )
59 3 55 7 36 56 46 lspsnel5
 |-  ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) )
60 22 59 mtbid
 |-  ( ph -> -. ( N ` { X } ) C_ ( N ` { Y , Z } ) )
61 nssne2
 |-  ( ( ( N ` { ( Y .+ Z ) } ) C_ ( N ` { Y , Z } ) /\ -. ( N ` { X } ) C_ ( N ` { Y , Z } ) ) -> ( N ` { ( Y .+ Z ) } ) =/= ( N ` { X } ) )
62 58 60 61 syl2anc
 |-  ( ph -> ( N ` { ( Y .+ Z ) } ) =/= ( N ` { X } ) )
63 62 necomd
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) )
64 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 43 54 63 19 hdmap1eq
 |-  ( ph -> ( ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) <-> ( ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( L ` { ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) } ) /\ ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) } ) ) ) )
65 30 35 64 mpbir2and
 |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )