Metamath Proof Explorer


Theorem hdmap1l6lem1

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h
|- H = ( LHyp ` K )
hdmap1l6.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1l6.v
|- V = ( Base ` U )
hdmap1l6.p
|- .+ = ( +g ` U )
hdmap1l6.s
|- .- = ( -g ` U )
hdmap1l6c.o
|- .0. = ( 0g ` U )
hdmap1l6.n
|- N = ( LSpan ` U )
hdmap1l6.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1l6.d
|- D = ( Base ` C )
hdmap1l6.a
|- .+b = ( +g ` C )
hdmap1l6.r
|- R = ( -g ` C )
hdmap1l6.q
|- Q = ( 0g ` C )
hdmap1l6.l
|- L = ( LSpan ` C )
hdmap1l6.m
|- M = ( ( mapd ` K ) ` W )
hdmap1l6.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1l6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1l6.f
|- ( ph -> F e. D )
hdmap1l6cl.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1l6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
hdmap1l6e.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap1l6e.z
|- ( ph -> Z e. ( V \ { .0. } ) )
hdmap1l6e.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
hdmap1l6.yz
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
hdmap1l6.fg
|- ( ph -> ( I ` <. X , F , Y >. ) = G )
hdmap1l6.fe
|- ( ph -> ( I ` <. X , F , Z >. ) = E )
Assertion hdmap1l6lem1
|- ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( G .+b E ) ) } ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h
 |-  H = ( LHyp ` K )
2 hdmap1l6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1l6.v
 |-  V = ( Base ` U )
4 hdmap1l6.p
 |-  .+ = ( +g ` U )
5 hdmap1l6.s
 |-  .- = ( -g ` U )
6 hdmap1l6c.o
 |-  .0. = ( 0g ` U )
7 hdmap1l6.n
 |-  N = ( LSpan ` U )
8 hdmap1l6.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hdmap1l6.d
 |-  D = ( Base ` C )
10 hdmap1l6.a
 |-  .+b = ( +g ` C )
11 hdmap1l6.r
 |-  R = ( -g ` C )
12 hdmap1l6.q
 |-  Q = ( 0g ` C )
13 hdmap1l6.l
 |-  L = ( LSpan ` C )
14 hdmap1l6.m
 |-  M = ( ( mapd ` K ) ` W )
15 hdmap1l6.i
 |-  I = ( ( HDMap1 ` K ) ` W )
16 hdmap1l6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap1l6.f
 |-  ( ph -> F e. D )
18 hdmap1l6cl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 hdmap1l6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 hdmap1l6e.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
21 hdmap1l6e.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
22 hdmap1l6e.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
23 hdmap1l6.yz
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
24 hdmap1l6.fg
 |-  ( ph -> ( I ` <. X , F , Y >. ) = G )
25 hdmap1l6.fe
 |-  ( ph -> ( I ` <. X , F , Z >. ) = E )
26 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
27 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
28 18 eldifad
 |-  ( ph -> X e. V )
29 20 eldifad
 |-  ( ph -> Y e. V )
30 3 5 lmodvsubcl
 |-  ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V )
31 27 28 29 30 syl3anc
 |-  ( ph -> ( X .- Y ) e. V )
32 3 26 7 lspsncl
 |-  ( ( U e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) )
33 27 31 32 syl2anc
 |-  ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) )
34 21 eldifad
 |-  ( ph -> Z e. V )
35 3 26 7 lspsncl
 |-  ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) )
36 27 34 35 syl2anc
 |-  ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) )
37 eqid
 |-  ( LSSum ` U ) = ( LSSum ` U )
38 26 37 lsmcl
 |-  ( ( U e. LMod /\ ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) )
39 27 33 36 38 syl3anc
 |-  ( ph -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) )
40 3 5 lmodvsubcl
 |-  ( ( U e. LMod /\ X e. V /\ Z e. V ) -> ( X .- Z ) e. V )
41 27 28 34 40 syl3anc
 |-  ( ph -> ( X .- Z ) e. V )
42 3 26 7 lspsncl
 |-  ( ( U e. LMod /\ ( X .- Z ) e. V ) -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) )
43 27 41 42 syl2anc
 |-  ( ph -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) )
44 3 26 7 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
45 27 29 44 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
46 26 37 lsmcl
 |-  ( ( U e. LMod /\ ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) /\ ( N ` { Y } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) e. ( LSubSp ` U ) )
47 27 43 45 46 syl3anc
 |-  ( ph -> ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) e. ( LSubSp ` U ) )
48 1 14 2 26 16 39 47 mapdin
 |-  ( ph -> ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) )
49 eqid
 |-  ( LSSum ` C ) = ( LSSum ` C )
50 1 14 2 26 37 8 49 16 33 36 mapdlsm
 |-  ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) )
51 1 14 2 26 37 8 49 16 43 45 mapdlsm
 |-  ( ph -> ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) = ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) )
52 50 51 ineq12d
 |-  ( ph -> ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) i^i ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) )
53 1 2 16 dvhlvec
 |-  ( ph -> U e. LVec )
54 3 6 7 53 29 21 28 23 22 lspindp2
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) )
55 54 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
56 1 2 3 6 7 8 9 13 14 15 16 17 19 55 18 29 hdmap1cl
 |-  ( ph -> ( I ` <. X , F , Y >. ) e. D )
57 24 56 eqeltrrd
 |-  ( ph -> G e. D )
58 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 57 55 19 hdmap1eq
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) )
59 24 58 mpbid
 |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) )
60 59 simprd
 |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) )
61 3 6 7 53 20 34 28 23 22 lspindp1
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) )
62 61 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) )
63 1 2 3 6 7 8 9 13 14 15 16 17 19 62 18 34 hdmap1cl
 |-  ( ph -> ( I ` <. X , F , Z >. ) e. D )
64 25 63 eqeltrrd
 |-  ( ph -> E e. D )
65 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 64 62 19 hdmap1eq
 |-  ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) )
66 25 65 mpbid
 |-  ( ph -> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) )
67 66 simpld
 |-  ( ph -> ( M ` ( N ` { Z } ) ) = ( L ` { E } ) )
68 60 67 oveq12d
 |-  ( ph -> ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) )
69 66 simprd
 |-  ( ph -> ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) )
70 59 simpld
 |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) )
71 69 70 oveq12d
 |-  ( ph -> ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) = ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) )
72 68 71 ineq12d
 |-  ( ph -> ( ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) i^i ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) )
73 52 72 eqtrd
 |-  ( ph -> ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) )
74 48 73 eqtrd
 |-  ( ph -> ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) )
75 3 5 6 37 7 53 28 22 23 20 21 4 baerlem5a
 |-  ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) = ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) )
76 75 fveq2d
 |-  ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) )
77 1 8 16 lcdlvec
 |-  ( ph -> C e. LVec )
78 1 14 2 3 7 8 9 13 16 17 19 28 29 57 70 34 64 67 22 mapdindp
 |-  ( ph -> -. F e. ( L ` { G , E } ) )
79 1 14 2 3 7 8 9 13 16 57 70 29 34 64 67 23 mapdncol
 |-  ( ph -> ( L ` { G } ) =/= ( L ` { E } ) )
80 1 14 2 3 7 8 9 13 16 57 70 6 12 20 mapdn0
 |-  ( ph -> G e. ( D \ { Q } ) )
81 1 14 2 3 7 8 9 13 16 64 67 6 12 21 mapdn0
 |-  ( ph -> E e. ( D \ { Q } ) )
82 9 11 12 49 13 77 17 78 79 80 81 10 baerlem5a
 |-  ( ph -> ( L ` { ( F R ( G .+b E ) ) } ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) )
83 74 76 82 3eqtr4d
 |-  ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( G .+b E ) ) } ) )