| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1l6.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap1l6.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap1l6.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap1l6.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap1l6.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | hdmap1l6c.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap1l6.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap1l6.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hdmap1l6.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hdmap1l6.a |  |-  .+b = ( +g ` C ) | 
						
							| 11 |  | hdmap1l6.r |  |-  R = ( -g ` C ) | 
						
							| 12 |  | hdmap1l6.q |  |-  Q = ( 0g ` C ) | 
						
							| 13 |  | hdmap1l6.l |  |-  L = ( LSpan ` C ) | 
						
							| 14 |  | hdmap1l6.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 15 |  | hdmap1l6.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 16 |  | hdmap1l6.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap1l6.f |  |-  ( ph -> F e. D ) | 
						
							| 18 |  | hdmap1l6cl.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap1l6.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 20 |  | hdmap1l6e.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 21 |  | hdmap1l6e.z |  |-  ( ph -> Z e. ( V \ { .0. } ) ) | 
						
							| 22 |  | hdmap1l6e.xn |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 23 |  | hdmap1l6.yz |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) | 
						
							| 24 |  | hdmap1l6.fg |  |-  ( ph -> ( I ` <. X , F , Y >. ) = G ) | 
						
							| 25 |  | hdmap1l6.fe |  |-  ( ph -> ( I ` <. X , F , Z >. ) = E ) | 
						
							| 26 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 27 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 28 | 18 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 29 | 20 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 30 | 3 5 | lmodvsubcl |  |-  ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) | 
						
							| 31 | 27 28 29 30 | syl3anc |  |-  ( ph -> ( X .- Y ) e. V ) | 
						
							| 32 | 3 26 7 | lspsncl |  |-  ( ( U e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) | 
						
							| 34 | 21 | eldifad |  |-  ( ph -> Z e. V ) | 
						
							| 35 | 3 26 7 | lspsncl |  |-  ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) | 
						
							| 36 | 27 34 35 | syl2anc |  |-  ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) | 
						
							| 37 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 38 | 26 37 | lsmcl |  |-  ( ( U e. LMod /\ ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) | 
						
							| 39 | 27 33 36 38 | syl3anc |  |-  ( ph -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) | 
						
							| 40 | 3 5 | lmodvsubcl |  |-  ( ( U e. LMod /\ X e. V /\ Z e. V ) -> ( X .- Z ) e. V ) | 
						
							| 41 | 27 28 34 40 | syl3anc |  |-  ( ph -> ( X .- Z ) e. V ) | 
						
							| 42 | 3 26 7 | lspsncl |  |-  ( ( U e. LMod /\ ( X .- Z ) e. V ) -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) | 
						
							| 43 | 27 41 42 | syl2anc |  |-  ( ph -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) | 
						
							| 44 | 3 26 7 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 45 | 27 29 44 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 46 | 26 37 | lsmcl |  |-  ( ( U e. LMod /\ ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) /\ ( N ` { Y } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) e. ( LSubSp ` U ) ) | 
						
							| 47 | 27 43 45 46 | syl3anc |  |-  ( ph -> ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) e. ( LSubSp ` U ) ) | 
						
							| 48 | 1 14 2 26 16 39 47 | mapdin |  |-  ( ph -> ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) ) | 
						
							| 49 |  | eqid |  |-  ( LSSum ` C ) = ( LSSum ` C ) | 
						
							| 50 | 1 14 2 26 37 8 49 16 33 36 | mapdlsm |  |-  ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) | 
						
							| 51 | 1 14 2 26 37 8 49 16 43 45 | mapdlsm |  |-  ( ph -> ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) = ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 52 | 50 51 | ineq12d |  |-  ( ph -> ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) i^i ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) ) | 
						
							| 53 | 1 2 16 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 54 | 3 6 7 53 29 21 28 23 22 | lspindp2 |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) | 
						
							| 55 | 54 | simpld |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 56 | 1 2 3 6 7 8 9 13 14 15 16 17 19 55 18 29 | hdmap1cl |  |-  ( ph -> ( I ` <. X , F , Y >. ) e. D ) | 
						
							| 57 | 24 56 | eqeltrrd |  |-  ( ph -> G e. D ) | 
						
							| 58 | 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 57 55 19 | hdmap1eq |  |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) | 
						
							| 59 | 24 58 | mpbid |  |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) | 
						
							| 60 | 59 | simprd |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) | 
						
							| 61 | 3 6 7 53 20 34 28 23 22 | lspindp1 |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) | 
						
							| 62 | 61 | simpld |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) | 
						
							| 63 | 1 2 3 6 7 8 9 13 14 15 16 17 19 62 18 34 | hdmap1cl |  |-  ( ph -> ( I ` <. X , F , Z >. ) e. D ) | 
						
							| 64 | 25 63 | eqeltrrd |  |-  ( ph -> E e. D ) | 
						
							| 65 | 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 64 62 19 | hdmap1eq |  |-  ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) ) | 
						
							| 66 | 25 65 | mpbid |  |-  ( ph -> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) | 
						
							| 67 | 66 | simpld |  |-  ( ph -> ( M ` ( N ` { Z } ) ) = ( L ` { E } ) ) | 
						
							| 68 | 60 67 | oveq12d |  |-  ( ph -> ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) ) | 
						
							| 69 | 66 | simprd |  |-  ( ph -> ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) | 
						
							| 70 | 59 | simpld |  |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) ) | 
						
							| 71 | 69 70 | oveq12d |  |-  ( ph -> ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) = ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) | 
						
							| 72 | 68 71 | ineq12d |  |-  ( ph -> ( ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) i^i ( ( M ` ( N ` { ( X .- Z ) } ) ) ( LSSum ` C ) ( M ` ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) | 
						
							| 73 | 52 72 | eqtrd |  |-  ( ph -> ( ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) | 
						
							| 74 | 48 73 | eqtrd |  |-  ( ph -> ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) | 
						
							| 75 | 3 5 6 37 7 53 28 22 23 20 21 4 | baerlem5a |  |-  ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) = ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( M ` ( ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) ( LSSum ` U ) ( N ` { Y } ) ) ) ) ) | 
						
							| 77 | 1 8 16 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 78 | 1 14 2 3 7 8 9 13 16 17 19 28 29 57 70 34 64 67 22 | mapdindp |  |-  ( ph -> -. F e. ( L ` { G , E } ) ) | 
						
							| 79 | 1 14 2 3 7 8 9 13 16 57 70 29 34 64 67 23 | mapdncol |  |-  ( ph -> ( L ` { G } ) =/= ( L ` { E } ) ) | 
						
							| 80 | 1 14 2 3 7 8 9 13 16 57 70 6 12 20 | mapdn0 |  |-  ( ph -> G e. ( D \ { Q } ) ) | 
						
							| 81 | 1 14 2 3 7 8 9 13 16 64 67 6 12 21 | mapdn0 |  |-  ( ph -> E e. ( D \ { Q } ) ) | 
						
							| 82 | 9 11 12 49 13 77 17 78 79 80 81 10 | baerlem5a |  |-  ( ph -> ( L ` { ( F R ( G .+b E ) ) } ) = ( ( ( L ` { ( F R G ) } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R E ) } ) ( LSSum ` C ) ( L ` { G } ) ) ) ) | 
						
							| 83 | 74 76 82 | 3eqtr4d |  |-  ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( G .+b E ) ) } ) ) |