Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1l6.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1l6.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1l6.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1l6.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmap1l6.s |
|- .- = ( -g ` U ) |
6 |
|
hdmap1l6c.o |
|- .0. = ( 0g ` U ) |
7 |
|
hdmap1l6.n |
|- N = ( LSpan ` U ) |
8 |
|
hdmap1l6.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hdmap1l6.d |
|- D = ( Base ` C ) |
10 |
|
hdmap1l6.a |
|- .+b = ( +g ` C ) |
11 |
|
hdmap1l6.r |
|- R = ( -g ` C ) |
12 |
|
hdmap1l6.q |
|- Q = ( 0g ` C ) |
13 |
|
hdmap1l6.l |
|- L = ( LSpan ` C ) |
14 |
|
hdmap1l6.m |
|- M = ( ( mapd ` K ) ` W ) |
15 |
|
hdmap1l6.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
16 |
|
hdmap1l6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap1l6.f |
|- ( ph -> F e. D ) |
18 |
|
hdmap1l6cl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
19 |
|
hdmap1l6.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
20 |
|
hdmap1l6e.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
21 |
|
hdmap1l6e.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
22 |
|
hdmap1l6e.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
23 |
|
hdmap1l6.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
24 |
|
hdmap1l6.fg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
25 |
|
hdmap1l6.fe |
|- ( ph -> ( I ` <. X , F , Z >. ) = E ) |
26 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
27 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
28 |
20
|
eldifad |
|- ( ph -> Y e. V ) |
29 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
30 |
27 28 29
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
31 |
21
|
eldifad |
|- ( ph -> Z e. V ) |
32 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
33 |
27 31 32
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
34 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
35 |
26 34
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
36 |
27 30 33 35
|
syl3anc |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
37 |
18
|
eldifad |
|- ( ph -> X e. V ) |
38 |
3 4
|
lmodvacl |
|- ( ( U e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V ) |
39 |
27 28 31 38
|
syl3anc |
|- ( ph -> ( Y .+ Z ) e. V ) |
40 |
3 5
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ ( Y .+ Z ) e. V ) -> ( X .- ( Y .+ Z ) ) e. V ) |
41 |
27 37 39 40
|
syl3anc |
|- ( ph -> ( X .- ( Y .+ Z ) ) e. V ) |
42 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- ( Y .+ Z ) ) e. V ) -> ( N ` { ( X .- ( Y .+ Z ) ) } ) e. ( LSubSp ` U ) ) |
43 |
27 41 42
|
syl2anc |
|- ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) e. ( LSubSp ` U ) ) |
44 |
3 26 7
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
45 |
27 37 44
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
46 |
26 34
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { ( X .- ( Y .+ Z ) ) } ) e. ( LSubSp ` U ) /\ ( N ` { X } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) e. ( LSubSp ` U ) ) |
47 |
27 43 45 46
|
syl3anc |
|- ( ph -> ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) e. ( LSubSp ` U ) ) |
48 |
1 14 2 26 16 36 47
|
mapdin |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) = ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) ) |
49 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
50 |
1 14 2 26 34 8 49 16 30 33
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) |
51 |
1 2 16
|
dvhlvec |
|- ( ph -> U e. LVec ) |
52 |
3 6 7 51 28 21 37 23 22
|
lspindp2 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) |
53 |
52
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
54 |
1 2 3 6 7 8 9 13 14 15 16 17 19 53 18 28
|
hdmap1cl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
55 |
24 54
|
eqeltrrd |
|- ( ph -> G e. D ) |
56 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 55 53 19
|
hdmap1eq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) ) |
57 |
24 56
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( L ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( L ` { ( F R G ) } ) ) ) |
58 |
57
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( L ` { G } ) ) |
59 |
3 6 7 51 20 31 37 23 22
|
lspindp1 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) |
60 |
59
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
61 |
1 2 3 6 7 8 9 13 14 15 16 17 19 60 18 31
|
hdmap1cl |
|- ( ph -> ( I ` <. X , F , Z >. ) e. D ) |
62 |
25 61
|
eqeltrrd |
|- ( ph -> E e. D ) |
63 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 62 60 19
|
hdmap1eq |
|- ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) ) |
64 |
25 63
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Z } ) ) = ( L ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( L ` { ( F R E ) } ) ) ) |
65 |
64
|
simpld |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( L ` { E } ) ) |
66 |
58 65
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( L ` { G } ) ( LSSum ` C ) ( L ` { E } ) ) ) |
67 |
50 66
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( L ` { G } ) ( LSSum ` C ) ( L ` { E } ) ) ) |
68 |
1 14 2 26 34 8 49 16 43 45
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) = ( ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) ( LSSum ` C ) ( M ` ( N ` { X } ) ) ) ) |
69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
hdmap1l6lem1 |
|- ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( L ` { ( F R ( G .+b E ) ) } ) ) |
70 |
69 19
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) ( LSSum ` C ) ( M ` ( N ` { X } ) ) ) = ( ( L ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( L ` { F } ) ) ) |
71 |
68 70
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) = ( ( L ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( L ` { F } ) ) ) |
72 |
67 71
|
ineq12d |
|- ( ph -> ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) = ( ( ( L ` { G } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( L ` { F } ) ) ) ) |
73 |
48 72
|
eqtrd |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) = ( ( ( L ` { G } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( L ` { F } ) ) ) ) |
74 |
3 5 6 34 7 51 37 22 23 20 21 4
|
baerlem5b |
|- ( ph -> ( N ` { ( Y .+ Z ) } ) = ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) |
75 |
74
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) ) |
76 |
1 8 16
|
lcdlvec |
|- ( ph -> C e. LVec ) |
77 |
1 14 2 3 7 8 9 13 16 17 19 37 28 55 58 31 62 65 22
|
mapdindp |
|- ( ph -> -. F e. ( L ` { G , E } ) ) |
78 |
1 14 2 3 7 8 9 13 16 55 58 28 31 62 65 23
|
mapdncol |
|- ( ph -> ( L ` { G } ) =/= ( L ` { E } ) ) |
79 |
1 14 2 3 7 8 9 13 16 55 58 6 12 20
|
mapdn0 |
|- ( ph -> G e. ( D \ { Q } ) ) |
80 |
1 14 2 3 7 8 9 13 16 62 65 6 12 21
|
mapdn0 |
|- ( ph -> E e. ( D \ { Q } ) ) |
81 |
9 11 12 49 13 76 17 77 78 79 80 10
|
baerlem5b |
|- ( ph -> ( L ` { ( G .+b E ) } ) = ( ( ( L ` { G } ) ( LSSum ` C ) ( L ` { E } ) ) i^i ( ( L ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( L ` { F } ) ) ) ) |
82 |
73 75 81
|
3eqtr4d |
|- ( ph -> ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( L ` { ( G .+b E ) } ) ) |