Metamath Proof Explorer


Theorem hdmap1l6lem2

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6e.y φYV0˙
hdmap1l6e.z φZV0˙
hdmap1l6e.xn φ¬XNYZ
hdmap1l6.yz φNYNZ
hdmap1l6.fg φIXFY=G
hdmap1l6.fe φIXFZ=E
Assertion hdmap1l6lem2 φMNY+˙Z=LG˙E

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6e.y φYV0˙
21 hdmap1l6e.z φZV0˙
22 hdmap1l6e.xn φ¬XNYZ
23 hdmap1l6.yz φNYNZ
24 hdmap1l6.fg φIXFY=G
25 hdmap1l6.fe φIXFZ=E
26 eqid LSubSpU=LSubSpU
27 1 2 16 dvhlmod φULMod
28 20 eldifad φYV
29 3 26 7 lspsncl ULModYVNYLSubSpU
30 27 28 29 syl2anc φNYLSubSpU
31 21 eldifad φZV
32 3 26 7 lspsncl ULModZVNZLSubSpU
33 27 31 32 syl2anc φNZLSubSpU
34 eqid LSSumU=LSSumU
35 26 34 lsmcl ULModNYLSubSpUNZLSubSpUNYLSSumUNZLSubSpU
36 27 30 33 35 syl3anc φNYLSSumUNZLSubSpU
37 18 eldifad φXV
38 3 4 lmodvacl ULModYVZVY+˙ZV
39 27 28 31 38 syl3anc φY+˙ZV
40 3 5 lmodvsubcl ULModXVY+˙ZVX-˙Y+˙ZV
41 27 37 39 40 syl3anc φX-˙Y+˙ZV
42 3 26 7 lspsncl ULModX-˙Y+˙ZVNX-˙Y+˙ZLSubSpU
43 27 41 42 syl2anc φNX-˙Y+˙ZLSubSpU
44 3 26 7 lspsncl ULModXVNXLSubSpU
45 27 37 44 syl2anc φNXLSubSpU
46 26 34 lsmcl ULModNX-˙Y+˙ZLSubSpUNXLSubSpUNX-˙Y+˙ZLSSumUNXLSubSpU
47 27 43 45 46 syl3anc φNX-˙Y+˙ZLSSumUNXLSubSpU
48 1 14 2 26 16 36 47 mapdin φMNYLSSumUNZNX-˙Y+˙ZLSSumUNX=MNYLSSumUNZMNX-˙Y+˙ZLSSumUNX
49 eqid LSSumC=LSSumC
50 1 14 2 26 34 8 49 16 30 33 mapdlsm φMNYLSSumUNZ=MNYLSSumCMNZ
51 1 2 16 dvhlvec φULVec
52 3 6 7 51 28 21 37 23 22 lspindp2 φNXNY¬ZNXY
53 52 simpld φNXNY
54 1 2 3 6 7 8 9 13 14 15 16 17 19 53 18 28 hdmap1cl φIXFYD
55 24 54 eqeltrrd φGD
56 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 55 53 19 hdmap1eq φIXFY=GMNY=LGMNX-˙Y=LFRG
57 24 56 mpbid φMNY=LGMNX-˙Y=LFRG
58 57 simpld φMNY=LG
59 3 6 7 51 20 31 37 23 22 lspindp1 φNXNZ¬YNXZ
60 59 simpld φNXNZ
61 1 2 3 6 7 8 9 13 14 15 16 17 19 60 18 31 hdmap1cl φIXFZD
62 25 61 eqeltrrd φED
63 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 62 60 19 hdmap1eq φIXFZ=EMNZ=LEMNX-˙Z=LFRE
64 25 63 mpbid φMNZ=LEMNX-˙Z=LFRE
65 64 simpld φMNZ=LE
66 58 65 oveq12d φMNYLSSumCMNZ=LGLSSumCLE
67 50 66 eqtrd φMNYLSSumUNZ=LGLSSumCLE
68 1 14 2 26 34 8 49 16 43 45 mapdlsm φMNX-˙Y+˙ZLSSumUNX=MNX-˙Y+˙ZLSSumCMNX
69 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem1 φMNX-˙Y+˙Z=LFRG˙E
70 69 19 oveq12d φMNX-˙Y+˙ZLSSumCMNX=LFRG˙ELSSumCLF
71 68 70 eqtrd φMNX-˙Y+˙ZLSSumUNX=LFRG˙ELSSumCLF
72 67 71 ineq12d φMNYLSSumUNZMNX-˙Y+˙ZLSSumUNX=LGLSSumCLELFRG˙ELSSumCLF
73 48 72 eqtrd φMNYLSSumUNZNX-˙Y+˙ZLSSumUNX=LGLSSumCLELFRG˙ELSSumCLF
74 3 5 6 34 7 51 37 22 23 20 21 4 baerlem5b φNY+˙Z=NYLSSumUNZNX-˙Y+˙ZLSSumUNX
75 74 fveq2d φMNY+˙Z=MNYLSSumUNZNX-˙Y+˙ZLSSumUNX
76 1 8 16 lcdlvec φCLVec
77 1 14 2 3 7 8 9 13 16 17 19 37 28 55 58 31 62 65 22 mapdindp φ¬FLGE
78 1 14 2 3 7 8 9 13 16 55 58 28 31 62 65 23 mapdncol φLGLE
79 1 14 2 3 7 8 9 13 16 55 58 6 12 20 mapdn0 φGDQ
80 1 14 2 3 7 8 9 13 16 62 65 6 12 21 mapdn0 φEDQ
81 9 11 12 49 13 76 17 77 78 79 80 10 baerlem5b φLG˙E=LGLSSumCLELFRG˙ELSSumCLF
82 73 75 81 3eqtr4d φMNY+˙Z=LG˙E