Metamath Proof Explorer


Theorem hdmap1cl

Description: Convert closure theorem mapdhcl to use HDMap1 function. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1eq2.h H=LHypK
hdmap1eq2.u U=DVecHKW
hdmap1eq2.v V=BaseU
hdmap1eq2.o 0˙=0U
hdmap1eq2.n N=LSpanU
hdmap1eq2.c C=LCDualKW
hdmap1eq2.d D=BaseC
hdmap1eq2.l L=LSpanC
hdmap1eq2.m M=mapdKW
hdmap1eq2.i I=HDMap1KW
hdmap1eq2.k φKHLWH
hdmap1eq2.f φFD
hdmap1eq2.mn φMNX=LF
hdmap1cl.ne φNXNY
hdmap1cl.x φXV0˙
hdmap1cl.y φYV
Assertion hdmap1cl φIXFYD

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h H=LHypK
2 hdmap1eq2.u U=DVecHKW
3 hdmap1eq2.v V=BaseU
4 hdmap1eq2.o 0˙=0U
5 hdmap1eq2.n N=LSpanU
6 hdmap1eq2.c C=LCDualKW
7 hdmap1eq2.d D=BaseC
8 hdmap1eq2.l L=LSpanC
9 hdmap1eq2.m M=mapdKW
10 hdmap1eq2.i I=HDMap1KW
11 hdmap1eq2.k φKHLWH
12 hdmap1eq2.f φFD
13 hdmap1eq2.mn φMNX=LF
14 hdmap1cl.ne φNXNY
15 hdmap1cl.x φXV0˙
16 hdmap1cl.y φYV
17 eqid -U=-U
18 eqid -C=-C
19 eqid 0C=0C
20 eqid xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch
21 1 2 3 17 4 5 6 7 18 19 8 9 10 11 15 12 16 20 hdmap1valc φIXFY=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChXFY
22 19 20 1 9 2 3 17 4 5 6 7 18 8 11 12 13 15 16 14 mapdhcl φxVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChXFYD
23 21 22 eqeltrd φIXFYD