Metamath Proof Explorer


Theorem hdmap1eq2

Description: Convert mapdheq2 to use HDMap1 function. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1eq2.h H = LHyp K
hdmap1eq2.u U = DVecH K W
hdmap1eq2.v V = Base U
hdmap1eq2.o 0 ˙ = 0 U
hdmap1eq2.n N = LSpan U
hdmap1eq2.c C = LCDual K W
hdmap1eq2.d D = Base C
hdmap1eq2.l L = LSpan C
hdmap1eq2.m M = mapd K W
hdmap1eq2.i I = HDMap1 K W
hdmap1eq2.k φ K HL W H
hdmap1eq2.f φ F D
hdmap1eq2.mn φ M N X = L F
hdmap1eq2.ne φ N X N Y
hdmap1eq2.x φ X V 0 ˙
hdmap1eq2.y φ Y V 0 ˙
hdmap1eq2.e φ I X F Y = G
Assertion hdmap1eq2 φ I Y G X = F

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h H = LHyp K
2 hdmap1eq2.u U = DVecH K W
3 hdmap1eq2.v V = Base U
4 hdmap1eq2.o 0 ˙ = 0 U
5 hdmap1eq2.n N = LSpan U
6 hdmap1eq2.c C = LCDual K W
7 hdmap1eq2.d D = Base C
8 hdmap1eq2.l L = LSpan C
9 hdmap1eq2.m M = mapd K W
10 hdmap1eq2.i I = HDMap1 K W
11 hdmap1eq2.k φ K HL W H
12 hdmap1eq2.f φ F D
13 hdmap1eq2.mn φ M N X = L F
14 hdmap1eq2.ne φ N X N Y
15 hdmap1eq2.x φ X V 0 ˙
16 hdmap1eq2.y φ Y V 0 ˙
17 hdmap1eq2.e φ I X F Y = G
18 eqid - U = - U
19 eqid - C = - C
20 eqid 0 C = 0 C
21 16 eldifad φ Y V
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21 hdmap1cl φ I X F Y D
23 17 22 eqeltrrd φ G D
24 15 eldifad φ X V
25 eqid x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h
26 1 2 3 18 4 5 6 7 19 20 8 9 10 11 16 23 24 25 hdmap1valc φ I Y G X = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h Y G X
27 1 2 3 18 4 5 6 7 19 20 8 9 10 11 15 12 21 25 hdmap1valc φ I X F Y = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h X F Y
28 27 17 eqtr3d φ x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h X F Y = G
29 1 2 3 18 4 5 6 7 19 20 8 9 25 11 12 13 28 14 15 16 mapdh75e φ x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h Y G X = F
30 26 29 eqtrd φ I Y G X = F