Metamath Proof Explorer


Theorem hdmap1eq2

Description: Convert mapdheq2 to use HDMap1 function. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1eq2.h
|- H = ( LHyp ` K )
hdmap1eq2.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1eq2.v
|- V = ( Base ` U )
hdmap1eq2.o
|- .0. = ( 0g ` U )
hdmap1eq2.n
|- N = ( LSpan ` U )
hdmap1eq2.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1eq2.d
|- D = ( Base ` C )
hdmap1eq2.l
|- L = ( LSpan ` C )
hdmap1eq2.m
|- M = ( ( mapd ` K ) ` W )
hdmap1eq2.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1eq2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1eq2.f
|- ( ph -> F e. D )
hdmap1eq2.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
hdmap1eq2.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
hdmap1eq2.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1eq2.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap1eq2.e
|- ( ph -> ( I ` <. X , F , Y >. ) = G )
Assertion hdmap1eq2
|- ( ph -> ( I ` <. Y , G , X >. ) = F )

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h
 |-  H = ( LHyp ` K )
2 hdmap1eq2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1eq2.v
 |-  V = ( Base ` U )
4 hdmap1eq2.o
 |-  .0. = ( 0g ` U )
5 hdmap1eq2.n
 |-  N = ( LSpan ` U )
6 hdmap1eq2.c
 |-  C = ( ( LCDual ` K ) ` W )
7 hdmap1eq2.d
 |-  D = ( Base ` C )
8 hdmap1eq2.l
 |-  L = ( LSpan ` C )
9 hdmap1eq2.m
 |-  M = ( ( mapd ` K ) ` W )
10 hdmap1eq2.i
 |-  I = ( ( HDMap1 ` K ) ` W )
11 hdmap1eq2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 hdmap1eq2.f
 |-  ( ph -> F e. D )
13 hdmap1eq2.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
14 hdmap1eq2.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
15 hdmap1eq2.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
16 hdmap1eq2.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
17 hdmap1eq2.e
 |-  ( ph -> ( I ` <. X , F , Y >. ) = G )
18 eqid
 |-  ( -g ` U ) = ( -g ` U )
19 eqid
 |-  ( -g ` C ) = ( -g ` C )
20 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
21 16 eldifad
 |-  ( ph -> Y e. V )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21 hdmap1cl
 |-  ( ph -> ( I ` <. X , F , Y >. ) e. D )
23 17 22 eqeltrrd
 |-  ( ph -> G e. D )
24 15 eldifad
 |-  ( ph -> X e. V )
25 eqid
 |-  ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) )
26 1 2 3 18 4 5 6 7 19 20 8 9 10 11 16 23 24 25 hdmap1valc
 |-  ( ph -> ( I ` <. Y , G , X >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. Y , G , X >. ) )
27 1 2 3 18 4 5 6 7 19 20 8 9 10 11 15 12 21 25 hdmap1valc
 |-  ( ph -> ( I ` <. X , F , Y >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Y >. ) )
28 27 17 eqtr3d
 |-  ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Y >. ) = G )
29 1 2 3 18 4 5 6 7 19 20 8 9 25 11 12 13 28 14 15 16 mapdh75e
 |-  ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. Y , G , X >. ) = F )
30 26 29 eqtrd
 |-  ( ph -> ( I ` <. Y , G , X >. ) = F )