| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1eq2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap1eq2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap1eq2.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap1eq2.o |  |-  .0. = ( 0g ` U ) | 
						
							| 5 |  | hdmap1eq2.n |  |-  N = ( LSpan ` U ) | 
						
							| 6 |  | hdmap1eq2.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | hdmap1eq2.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | hdmap1eq2.l |  |-  L = ( LSpan ` C ) | 
						
							| 9 |  | hdmap1eq2.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 10 |  | hdmap1eq2.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 11 |  | hdmap1eq2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmap1eq2.f |  |-  ( ph -> F e. D ) | 
						
							| 13 |  | hdmap1eq2.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 14 |  | hdmap1eq2.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 15 |  | hdmap1eq2.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 16 |  | hdmap1eq2.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 17 |  | hdmap1eq2.e |  |-  ( ph -> ( I ` <. X , F , Y >. ) = G ) | 
						
							| 18 |  | eqid |  |-  ( -g ` U ) = ( -g ` U ) | 
						
							| 19 |  | eqid |  |-  ( -g ` C ) = ( -g ` C ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 21 | 16 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21 | hdmap1cl |  |-  ( ph -> ( I ` <. X , F , Y >. ) e. D ) | 
						
							| 23 | 17 22 | eqeltrrd |  |-  ( ph -> G e. D ) | 
						
							| 24 | 15 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 25 |  | eqid |  |-  ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) | 
						
							| 26 | 1 2 3 18 4 5 6 7 19 20 8 9 10 11 16 23 24 25 | hdmap1valc |  |-  ( ph -> ( I ` <. Y , G , X >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. Y , G , X >. ) ) | 
						
							| 27 | 1 2 3 18 4 5 6 7 19 20 8 9 10 11 15 12 21 25 | hdmap1valc |  |-  ( ph -> ( I ` <. X , F , Y >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Y >. ) ) | 
						
							| 28 | 27 17 | eqtr3d |  |-  ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Y >. ) = G ) | 
						
							| 29 | 1 2 3 18 4 5 6 7 19 20 8 9 25 11 12 13 28 14 15 16 | mapdh75e |  |-  ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. Y , G , X >. ) = F ) | 
						
							| 30 | 26 29 | eqtrd |  |-  ( ph -> ( I ` <. Y , G , X >. ) = F ) |