Metamath Proof Explorer


Theorem hdmap1eq2

Description: Convert mapdheq2 to use HDMap1 function. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1eq2.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1eq2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1eq2.o 0 = ( 0g𝑈 )
hdmap1eq2.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1eq2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1eq2.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1eq2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1eq2.f ( 𝜑𝐹𝐷 )
hdmap1eq2.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1eq2.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
hdmap1eq2.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq2.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq2.e ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
Assertion hdmap1eq2 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑋 ⟩ ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1eq2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1eq2.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1eq2.o 0 = ( 0g𝑈 )
5 hdmap1eq2.n 𝑁 = ( LSpan ‘ 𝑈 )
6 hdmap1eq2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 hdmap1eq2.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmap1eq2.l 𝐿 = ( LSpan ‘ 𝐶 )
9 hdmap1eq2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
10 hdmap1eq2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
11 hdmap1eq2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmap1eq2.f ( 𝜑𝐹𝐷 )
13 hdmap1eq2.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
14 hdmap1eq2.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
15 hdmap1eq2.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
16 hdmap1eq2.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
17 hdmap1eq2.e ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
18 eqid ( -g𝑈 ) = ( -g𝑈 )
19 eqid ( -g𝐶 ) = ( -g𝐶 )
20 eqid ( 0g𝐶 ) = ( 0g𝐶 )
21 16 eldifad ( 𝜑𝑌𝑉 )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
23 17 22 eqeltrrd ( 𝜑𝐺𝐷 )
24 15 eldifad ( 𝜑𝑋𝑉 )
25 eqid ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) )
26 1 2 3 18 4 5 6 7 19 20 8 9 10 11 16 23 24 25 hdmap1valc ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑋 ⟩ ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑌 , 𝐺 , 𝑋 ⟩ ) )
27 1 2 3 18 4 5 6 7 19 20 8 9 10 11 15 12 21 25 hdmap1valc ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) )
28 27 17 eqtr3d ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
29 1 2 3 18 4 5 6 7 19 20 8 9 25 11 12 13 28 14 15 16 mapdh75e ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑌 , 𝐺 , 𝑋 ⟩ ) = 𝐹 )
30 26 29 eqtrd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑋 ⟩ ) = 𝐹 )