| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1eq2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1eq2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1eq2.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1eq2.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1eq2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 6 |  | hdmap1eq2.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmap1eq2.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | hdmap1eq2.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 9 |  | hdmap1eq2.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap1eq2.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmap1eq2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmap1eq2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 13 |  | hdmap1eq2.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 14 |  | hdmap1eq2.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 15 |  | hdmap1eq2.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 16 |  | hdmap1eq2.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | hdmap1eq2.e | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺 ) | 
						
							| 18 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 19 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 21 | 16 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21 | hdmap1cl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ∈  𝐷 ) | 
						
							| 23 | 17 22 | eqeltrrd | ⊢ ( 𝜑  →  𝐺  ∈  𝐷 ) | 
						
							| 24 | 15 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐿 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) )  =  ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐿 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) | 
						
							| 26 | 1 2 3 18 4 5 6 7 19 20 8 9 10 11 16 23 24 25 | hdmap1valc | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑋 〉 )  =  ( ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐿 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑌 ,  𝐺 ,  𝑋 〉 ) ) | 
						
							| 27 | 1 2 3 18 4 5 6 7 19 20 8 9 10 11 15 12 21 25 | hdmap1valc | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  ( ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐿 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 ) ) | 
						
							| 28 | 27 17 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐿 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺 ) | 
						
							| 29 | 1 2 3 18 4 5 6 7 19 20 8 9 25 11 12 13 28 14 15 16 | mapdh75e | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  ( 0g ‘ 𝐶 ) ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐿 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐿 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑌 ,  𝐺 ,  𝑋 〉 )  =  𝐹 ) | 
						
							| 30 | 26 29 | eqtrd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑋 〉 )  =  𝐹 ) |