| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh75.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdh75.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdh75.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
mapdh75.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 5 |
|
mapdh75.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
mapdh75.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdh75.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapdh75.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 9 |
|
mapdh75.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 10 |
|
mapdh75.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 11 |
|
mapdh75.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 12 |
|
mapdh75.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
mapdh75.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
| 14 |
|
mapdh75.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
mapdh75.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 16 |
|
mapdh75.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 17 |
|
mapdh75b |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
| 18 |
|
mapdh75e.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 19 |
|
mapdh75e.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 20 |
|
mapdh75e.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 21 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 22 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 21 18
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) |
| 23 |
17 22
|
eqeltrrd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐷 ) |
| 24 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 20 23 18
|
mapdheq2 |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 → ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑋 〉 ) = 𝐹 ) ) |
| 25 |
17 24
|
mpd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑋 〉 ) = 𝐹 ) |