Description: Part (7) of Baer p. 48 line 10 (5 of 6 cases). X , Y , Z are Baer's u, v, w. (Note: Cases 1 of 6 and 2 of 6 are hypotheses mapdh75b here and mapdh75a in mapdh75cN .) (Contributed by NM, 2-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdh75.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
mapdh75.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh75.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
mapdh75.s | ⊢ − = ( -g ‘ 𝑈 ) | ||
mapdh75.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | ||
mapdh75.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
mapdh75.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh75.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | ||
mapdh75.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | ||
mapdh75.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | ||
mapdh75.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | ||
mapdh75.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh75.i | ⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | ||
mapdh75.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
mapdh75.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
mapdh75.mn | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) | ||
mapdh75b | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) | ||
mapdh75e.ne | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) | ||
mapdh75e.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
mapdh75e.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
Assertion | mapdh75e | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑋 〉 ) = 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh75.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | mapdh75.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | mapdh75.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
4 | mapdh75.s | ⊢ − = ( -g ‘ 𝑈 ) | |
5 | mapdh75.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
6 | mapdh75.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
7 | mapdh75.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
8 | mapdh75.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | |
9 | mapdh75.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | |
10 | mapdh75.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | |
11 | mapdh75.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | |
12 | mapdh75.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | |
13 | mapdh75.i | ⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | |
14 | mapdh75.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
15 | mapdh75.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
16 | mapdh75.mn | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) | |
17 | mapdh75b | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) | |
18 | mapdh75e.ne | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) | |
19 | mapdh75e.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
20 | mapdh75e.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) | |
21 | 20 | eldifad | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
22 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 21 18 | mapdhcl | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) |
23 | 17 22 | eqeltrrd | ⊢ ( 𝜑 → 𝐸 ∈ 𝐷 ) |
24 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 20 23 18 | mapdheq2 | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 → ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑋 〉 ) = 𝐹 ) ) |
25 | 17 24 | mpd | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑋 〉 ) = 𝐹 ) |