Metamath Proof Explorer


Theorem mapdh75e

Description: Part (7) of Baer p. 48 line 10 (5 of 6 cases). X , Y , Z are Baer's u, v, w. (Note: Cases 1 of 6 and 2 of 6 are hypotheses mapdh75b here and mapdh75a in mapdh75cN .) (Contributed by NM, 2-May-2015)

Ref Expression
Hypotheses mapdh75.h H = LHyp K
mapdh75.u U = DVecH K W
mapdh75.v V = Base U
mapdh75.s - ˙ = - U
mapdh75.o 0 ˙ = 0 U
mapdh75.n N = LSpan U
mapdh75.c C = LCDual K W
mapdh75.d D = Base C
mapdh75.r R = - C
mapdh75.q Q = 0 C
mapdh75.j J = LSpan C
mapdh75.m M = mapd K W
mapdh75.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh75.k φ K HL W H
mapdh75.f φ F D
mapdh75.mn φ M N X = J F
mapdh75b φ I X F Z = E
mapdh75e.ne φ N X N Z
mapdh75e.x φ X V 0 ˙
mapdh75e.z φ Z V 0 ˙
Assertion mapdh75e φ I Z E X = F

Proof

Step Hyp Ref Expression
1 mapdh75.h H = LHyp K
2 mapdh75.u U = DVecH K W
3 mapdh75.v V = Base U
4 mapdh75.s - ˙ = - U
5 mapdh75.o 0 ˙ = 0 U
6 mapdh75.n N = LSpan U
7 mapdh75.c C = LCDual K W
8 mapdh75.d D = Base C
9 mapdh75.r R = - C
10 mapdh75.q Q = 0 C
11 mapdh75.j J = LSpan C
12 mapdh75.m M = mapd K W
13 mapdh75.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh75.k φ K HL W H
15 mapdh75.f φ F D
16 mapdh75.mn φ M N X = J F
17 mapdh75b φ I X F Z = E
18 mapdh75e.ne φ N X N Z
19 mapdh75e.x φ X V 0 ˙
20 mapdh75e.z φ Z V 0 ˙
21 20 eldifad φ Z V
22 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 21 18 mapdhcl φ I X F Z D
23 17 22 eqeltrrd φ E D
24 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 20 23 18 mapdheq2 φ I X F Z = E I Z E X = F
25 17 24 mpd φ I Z E X = F