Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1eq2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1eq2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1eq2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1eq2.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
hdmap1eq2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
hdmap1eq2.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmap1eq2.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
hdmap1eq2.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
9 |
|
hdmap1eq2.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmap1eq2.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmap1eq2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmap1eq2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
13 |
|
hdmap1eq2.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
14 |
|
hdmap1eq4.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
hdmap1eq4.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
16 |
|
hdmap1eq4.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
hdmap1eq4.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
18 |
|
hdmap1eq4.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
19 |
|
hdmap1eq4.eg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
20 |
|
hdmap1eq4.ee |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐵 ) |
21 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
22 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
24 |
1 2 11
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
25 |
14
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
26 |
15
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
27 |
16
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
28 |
3 5 24 25 26 27 18
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 29 14 26
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
31 |
19 30
|
eqeltrrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
32 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) |
33 |
1 2 3 21 4 5 6 7 22 23 8 9 10 11 15 31 27 32
|
hdmap1valc |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑍 〉 ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑌 , 𝐺 , 𝑍 〉 ) ) |
34 |
1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 26 32
|
hdmap1valc |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) |
35 |
34 19
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
36 |
1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 27 32
|
hdmap1valc |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) |
37 |
36 20
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐵 ) |
38 |
23 32 1 9 2 3 21 4 5 6 7 22 8 11 12 13 14 15 16 18 17 35 37
|
mapdheq4 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , ( 0g ‘ 𝐶 ) , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐿 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑈 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝐶 ) ℎ ) } ) ) ) ) ) ‘ 〈 𝑌 , 𝐺 , 𝑍 〉 ) = 𝐵 ) |
39 |
33 38
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑍 〉 ) = 𝐵 ) |