Metamath Proof Explorer


Theorem hdmap1eq4N

Description: Convert mapdheq4 to use HDMap1 function. (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1eq2.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1eq2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1eq2.o 0 = ( 0g𝑈 )
hdmap1eq2.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1eq2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1eq2.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1eq2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1eq2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1eq2.f ( 𝜑𝐹𝐷 )
hdmap1eq2.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1eq4.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq4.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq4.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1eq4.ne ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
hdmap1eq4.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
hdmap1eq4.eg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
hdmap1eq4.ee ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐵 )
Assertion hdmap1eq4N ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑍 ⟩ ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1eq2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1eq2.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1eq2.o 0 = ( 0g𝑈 )
5 hdmap1eq2.n 𝑁 = ( LSpan ‘ 𝑈 )
6 hdmap1eq2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 hdmap1eq2.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmap1eq2.l 𝐿 = ( LSpan ‘ 𝐶 )
9 hdmap1eq2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
10 hdmap1eq2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
11 hdmap1eq2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmap1eq2.f ( 𝜑𝐹𝐷 )
13 hdmap1eq2.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
14 hdmap1eq4.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
15 hdmap1eq4.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
16 hdmap1eq4.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
17 hdmap1eq4.ne ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
18 hdmap1eq4.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
19 hdmap1eq4.eg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
20 hdmap1eq4.ee ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐵 )
21 eqid ( -g𝑈 ) = ( -g𝑈 )
22 eqid ( -g𝐶 ) = ( -g𝐶 )
23 eqid ( 0g𝐶 ) = ( 0g𝐶 )
24 1 2 11 dvhlvec ( 𝜑𝑈 ∈ LVec )
25 14 eldifad ( 𝜑𝑋𝑉 )
26 15 eldifad ( 𝜑𝑌𝑉 )
27 16 eldifad ( 𝜑𝑍𝑉 )
28 3 5 24 25 26 27 18 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) )
29 28 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 29 14 26 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
31 19 30 eqeltrrd ( 𝜑𝐺𝐷 )
32 eqid ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) )
33 1 2 3 21 4 5 6 7 22 23 8 9 10 11 15 31 27 32 hdmap1valc ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑍 ⟩ ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑌 , 𝐺 , 𝑍 ⟩ ) )
34 1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 26 32 hdmap1valc ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) )
35 34 19 eqtr3d ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
36 1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 27 32 hdmap1valc ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) )
37 36 20 eqtr3d ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐵 )
38 23 32 1 9 2 3 21 4 5 6 7 22 8 11 12 13 14 15 16 18 17 35 37 mapdheq4 ( 𝜑 → ( ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , ( 0g𝐶 ) , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐿 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( -g𝑈 ) ( 2nd𝑥 ) ) } ) ) = ( 𝐿 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) ( -g𝐶 ) ) } ) ) ) ) ) ‘ ⟨ 𝑌 , 𝐺 , 𝑍 ⟩ ) = 𝐵 )
39 33 38 eqtrd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑍 ⟩ ) = 𝐵 )