Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1eq2.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1eq2.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1eq2.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1eq2.o |
|- .0. = ( 0g ` U ) |
5 |
|
hdmap1eq2.n |
|- N = ( LSpan ` U ) |
6 |
|
hdmap1eq2.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
hdmap1eq2.d |
|- D = ( Base ` C ) |
8 |
|
hdmap1eq2.l |
|- L = ( LSpan ` C ) |
9 |
|
hdmap1eq2.m |
|- M = ( ( mapd ` K ) ` W ) |
10 |
|
hdmap1eq2.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
11 |
|
hdmap1eq2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmap1eq2.f |
|- ( ph -> F e. D ) |
13 |
|
hdmap1eq2.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
14 |
|
hdmap1eq4.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
15 |
|
hdmap1eq4.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
16 |
|
hdmap1eq4.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
17 |
|
hdmap1eq4.ne |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
18 |
|
hdmap1eq4.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
19 |
|
hdmap1eq4.eg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
20 |
|
hdmap1eq4.ee |
|- ( ph -> ( I ` <. X , F , Z >. ) = B ) |
21 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
22 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
23 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
24 |
1 2 11
|
dvhlvec |
|- ( ph -> U e. LVec ) |
25 |
14
|
eldifad |
|- ( ph -> X e. V ) |
26 |
15
|
eldifad |
|- ( ph -> Y e. V ) |
27 |
16
|
eldifad |
|- ( ph -> Z e. V ) |
28 |
3 5 24 25 26 27 18
|
lspindpi |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) |
29 |
28
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 29 14 26
|
hdmap1cl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
31 |
19 30
|
eqeltrrd |
|- ( ph -> G e. D ) |
32 |
|
eqid |
|- ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) |
33 |
1 2 3 21 4 5 6 7 22 23 8 9 10 11 15 31 27 32
|
hdmap1valc |
|- ( ph -> ( I ` <. Y , G , Z >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. Y , G , Z >. ) ) |
34 |
1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 26 32
|
hdmap1valc |
|- ( ph -> ( I ` <. X , F , Y >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Y >. ) ) |
35 |
34 19
|
eqtr3d |
|- ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Y >. ) = G ) |
36 |
1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 27 32
|
hdmap1valc |
|- ( ph -> ( I ` <. X , F , Z >. ) = ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Z >. ) ) |
37 |
36 20
|
eqtr3d |
|- ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. X , F , Z >. ) = B ) |
38 |
23 32 1 9 2 3 21 4 5 6 7 22 8 11 12 13 14 15 16 18 17 35 37
|
mapdheq4 |
|- ( ph -> ( ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) ` <. Y , G , Z >. ) = B ) |
39 |
33 38
|
eqtrd |
|- ( ph -> ( I ` <. Y , G , Z >. ) = B ) |