Metamath Proof Explorer


Theorem hdmap1eq4N

Description: Convert mapdheq4 to use HDMap1 function. (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1eq2.h H=LHypK
hdmap1eq2.u U=DVecHKW
hdmap1eq2.v V=BaseU
hdmap1eq2.o 0˙=0U
hdmap1eq2.n N=LSpanU
hdmap1eq2.c C=LCDualKW
hdmap1eq2.d D=BaseC
hdmap1eq2.l L=LSpanC
hdmap1eq2.m M=mapdKW
hdmap1eq2.i I=HDMap1KW
hdmap1eq2.k φKHLWH
hdmap1eq2.f φFD
hdmap1eq2.mn φMNX=LF
hdmap1eq4.x φXV0˙
hdmap1eq4.y φYV0˙
hdmap1eq4.z φZV0˙
hdmap1eq4.ne φNYNZ
hdmap1eq4.xn φ¬XNYZ
hdmap1eq4.eg φIXFY=G
hdmap1eq4.ee φIXFZ=B
Assertion hdmap1eq4N φIYGZ=B

Proof

Step Hyp Ref Expression
1 hdmap1eq2.h H=LHypK
2 hdmap1eq2.u U=DVecHKW
3 hdmap1eq2.v V=BaseU
4 hdmap1eq2.o 0˙=0U
5 hdmap1eq2.n N=LSpanU
6 hdmap1eq2.c C=LCDualKW
7 hdmap1eq2.d D=BaseC
8 hdmap1eq2.l L=LSpanC
9 hdmap1eq2.m M=mapdKW
10 hdmap1eq2.i I=HDMap1KW
11 hdmap1eq2.k φKHLWH
12 hdmap1eq2.f φFD
13 hdmap1eq2.mn φMNX=LF
14 hdmap1eq4.x φXV0˙
15 hdmap1eq4.y φYV0˙
16 hdmap1eq4.z φZV0˙
17 hdmap1eq4.ne φNYNZ
18 hdmap1eq4.xn φ¬XNYZ
19 hdmap1eq4.eg φIXFY=G
20 hdmap1eq4.ee φIXFZ=B
21 eqid -U=-U
22 eqid -C=-C
23 eqid 0C=0C
24 1 2 11 dvhlvec φULVec
25 14 eldifad φXV
26 15 eldifad φYV
27 16 eldifad φZV
28 3 5 24 25 26 27 18 lspindpi φNXNYNXNZ
29 28 simpld φNXNY
30 1 2 3 4 5 6 7 8 9 10 11 12 13 29 14 26 hdmap1cl φIXFYD
31 19 30 eqeltrrd φGD
32 eqid xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch
33 1 2 3 21 4 5 6 7 22 23 8 9 10 11 15 31 27 32 hdmap1valc φIYGZ=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChYGZ
34 1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 26 32 hdmap1valc φIXFY=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChXFY
35 34 19 eqtr3d φxVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChXFY=G
36 1 2 3 21 4 5 6 7 22 23 8 9 10 11 14 12 27 32 hdmap1valc φIXFZ=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChXFZ
37 36 20 eqtr3d φxVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChXFZ=B
38 23 32 1 9 2 3 21 4 5 6 7 22 8 11 12 13 14 15 16 18 17 35 37 mapdheq4 φxVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-ChYGZ=B
39 33 38 eqtrd φIYGZ=B