Metamath Proof Explorer


Theorem hdmap1l6lem1

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1l6.p + = ( +g𝑈 )
hdmap1l6.s = ( -g𝑈 )
hdmap1l6c.o 0 = ( 0g𝑈 )
hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1l6.a = ( +g𝐶 )
hdmap1l6.r 𝑅 = ( -g𝐶 )
hdmap1l6.q 𝑄 = ( 0g𝐶 )
hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1l6.f ( 𝜑𝐹𝐷 )
hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1l6e.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6e.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6e.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
hdmap1l6.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
hdmap1l6.fg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
hdmap1l6.fe ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐸 )
Assertion hdmap1l6lem1 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 𝐸 ) ) } ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1l6.p + = ( +g𝑈 )
5 hdmap1l6.s = ( -g𝑈 )
6 hdmap1l6c.o 0 = ( 0g𝑈 )
7 hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
8 hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
10 hdmap1l6.a = ( +g𝐶 )
11 hdmap1l6.r 𝑅 = ( -g𝐶 )
12 hdmap1l6.q 𝑄 = ( 0g𝐶 )
13 hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
14 hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
15 hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap1l6.f ( 𝜑𝐹𝐷 )
18 hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
20 hdmap1l6e.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
21 hdmap1l6e.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
22 hdmap1l6e.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
23 hdmap1l6.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
24 hdmap1l6.fg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
25 hdmap1l6.fe ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐸 )
26 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
27 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
28 18 eldifad ( 𝜑𝑋𝑉 )
29 20 eldifad ( 𝜑𝑌𝑉 )
30 3 5 lmodvsubcl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) ∈ 𝑉 )
31 27 28 29 30 syl3anc ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝑉 )
32 3 26 7 lspsncl ( ( 𝑈 ∈ LMod ∧ ( 𝑋 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) )
33 27 31 32 syl2anc ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) )
34 21 eldifad ( 𝜑𝑍𝑉 )
35 3 26 7 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑍𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
36 27 34 35 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
37 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
38 26 37 lsmcl ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∈ ( LSubSp ‘ 𝑈 ) )
39 27 33 36 38 syl3anc ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∈ ( LSubSp ‘ 𝑈 ) )
40 3 5 lmodvsubcl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉 ) → ( 𝑋 𝑍 ) ∈ 𝑉 )
41 27 28 34 40 syl3anc ( 𝜑 → ( 𝑋 𝑍 ) ∈ 𝑉 )
42 3 26 7 lspsncl ( ( 𝑈 ∈ LMod ∧ ( 𝑋 𝑍 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ∈ ( LSubSp ‘ 𝑈 ) )
43 27 41 42 syl2anc ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ∈ ( LSubSp ‘ 𝑈 ) )
44 3 26 7 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
45 27 29 44 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
46 26 37 lsmcl ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) )
47 27 43 45 46 syl3anc ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) )
48 1 14 2 26 16 39 47 mapdin ( 𝜑 → ( 𝑀 ‘ ( ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) )
49 eqid ( LSSum ‘ 𝐶 ) = ( LSSum ‘ 𝐶 )
50 1 14 2 26 37 8 49 16 33 36 mapdlsm ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) )
51 1 14 2 26 37 8 49 16 43 45 mapdlsm ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )
52 50 51 ineq12d ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) )
53 1 2 16 dvhlvec ( 𝜑𝑈 ∈ LVec )
54 3 6 7 53 29 21 28 23 22 lspindp2 ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) )
55 54 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
56 1 2 3 6 7 8 9 13 14 15 16 17 19 55 18 29 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
57 24 56 eqeltrrd ( 𝜑𝐺𝐷 )
58 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 57 55 19 hdmap1eq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )
59 24 58 mpbid ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) )
60 59 simprd ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) )
61 3 6 7 53 20 34 28 23 22 lspindp1 ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) )
62 61 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
63 1 2 3 6 7 8 9 13 14 15 16 17 19 62 18 34 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ∈ 𝐷 )
64 25 63 eqeltrrd ( 𝜑𝐸𝐷 )
65 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 64 62 19 hdmap1eq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐸 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐿 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) ) )
66 25 65 mpbid ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐿 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) )
67 66 simpld ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐿 ‘ { 𝐸 } ) )
68 60 67 oveq12d ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) )
69 66 simprd ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) )
70 59 simpld ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) )
71 69 70 oveq12d ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) )
72 68 71 ineq12d ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) )
73 52 72 eqtrd ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) )
74 48 73 eqtrd ( 𝜑 → ( 𝑀 ‘ ( ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) )
75 3 5 6 37 7 53 28 22 23 20 21 4 baerlem5a ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 ( 𝑌 + 𝑍 ) ) } ) = ( ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) )
76 75 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝑀 ‘ ( ( ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) )
77 1 8 16 lcdlvec ( 𝜑𝐶 ∈ LVec )
78 1 14 2 3 7 8 9 13 16 17 19 28 29 57 70 34 64 67 22 mapdindp ( 𝜑 → ¬ 𝐹 ∈ ( 𝐿 ‘ { 𝐺 , 𝐸 } ) )
79 1 14 2 3 7 8 9 13 16 57 70 29 34 64 67 23 mapdncol ( 𝜑 → ( 𝐿 ‘ { 𝐺 } ) ≠ ( 𝐿 ‘ { 𝐸 } ) )
80 1 14 2 3 7 8 9 13 16 57 70 6 12 20 mapdn0 ( 𝜑𝐺 ∈ ( 𝐷 ∖ { 𝑄 } ) )
81 1 14 2 3 7 8 9 13 16 64 67 6 12 21 mapdn0 ( 𝜑𝐸 ∈ ( 𝐷 ∖ { 𝑄 } ) )
82 9 11 12 49 13 77 17 78 79 80 81 10 baerlem5a ( 𝜑 → ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 𝐸 ) ) } ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) )
83 74 76 82 3eqtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 𝐸 ) ) } ) )