| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1l6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmap1l6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmap1l6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmap1l6.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 5 |
|
hdmap1l6.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 6 |
|
hdmap1l6c.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
hdmap1l6.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
hdmap1l6.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmap1l6.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 10 |
|
hdmap1l6.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
| 11 |
|
hdmap1l6.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 12 |
|
hdmap1l6.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 13 |
|
hdmap1l6.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 14 |
|
hdmap1l6.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 15 |
|
hdmap1l6.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
|
hdmap1l6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
|
hdmap1l6.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 18 |
|
hdmap1l6cl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 19 |
|
hdmap1l6.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) ) |
| 20 |
|
hdmap1l6e.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 21 |
|
hdmap1l6e.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 22 |
|
hdmap1l6e.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 23 |
|
hdmap1l6.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 24 |
|
hdmap1l6.fg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
| 25 |
|
hdmap1l6.fe |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
| 26 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 27 |
1 2 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 28 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 29 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 30 |
3 5
|
lmodvsubcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 31 |
27 28 29 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 32 |
3 26 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑋 − 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 33 |
27 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 34 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 35 |
3 26 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 36 |
27 34 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 37 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 38 |
26 37
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 39 |
27 33 36 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 40 |
3 5
|
lmodvsubcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑋 − 𝑍 ) ∈ 𝑉 ) |
| 41 |
27 28 34 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) ∈ 𝑉 ) |
| 42 |
3 26 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑋 − 𝑍 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 43 |
27 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 44 |
3 26 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 45 |
27 29 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 46 |
26 37
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 47 |
27 43 45 46
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 48 |
1 14 2 26 16 39 47
|
mapdin |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 49 |
|
eqid |
⊢ ( LSSum ‘ 𝐶 ) = ( LSSum ‘ 𝐶 ) |
| 50 |
1 14 2 26 37 8 49 16 33 36
|
mapdlsm |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |
| 51 |
1 14 2 26 37 8 49 16 43 45
|
mapdlsm |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 52 |
50 51
|
ineq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 53 |
1 2 16
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 54 |
3 6 7 53 29 21 28 23 22
|
lspindp2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 55 |
54
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 56 |
1 2 3 6 7 8 9 13 14 15 16 17 19 55 18 29
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
| 57 |
24 56
|
eqeltrrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
| 58 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 57 55 19
|
hdmap1eq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) |
| 59 |
24 58
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) |
| 60 |
59
|
simprd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) |
| 61 |
3 6 7 53 20 34 28 23 22
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
| 62 |
61
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 63 |
1 2 3 6 7 8 9 13 14 15 16 17 19 62 18 34
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) |
| 64 |
25 63
|
eqeltrrd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐷 ) |
| 65 |
1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 64 62 19
|
hdmap1eq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐿 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) ) ) |
| 66 |
25 65
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐿 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) ) |
| 67 |
66
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐿 ‘ { 𝐸 } ) ) |
| 68 |
60 67
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ) |
| 69 |
66
|
simprd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) |
| 70 |
59
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐿 ‘ { 𝐺 } ) ) |
| 71 |
69 70
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) |
| 72 |
68 71
|
ineq12d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) ) |
| 73 |
52 72
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ∩ ( 𝑀 ‘ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) ) |
| 74 |
48 73
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) ) |
| 75 |
3 5 6 37 7 53 28 22 23 20 21 4
|
baerlem5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) = ( ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 76 |
75
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝑀 ‘ ( ( ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ∩ ( ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
| 77 |
1 8 16
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
| 78 |
1 14 2 3 7 8 9 13 16 17 19 28 29 57 70 34 64 67 22
|
mapdindp |
⊢ ( 𝜑 → ¬ 𝐹 ∈ ( 𝐿 ‘ { 𝐺 , 𝐸 } ) ) |
| 79 |
1 14 2 3 7 8 9 13 16 57 70 29 34 64 67 23
|
mapdncol |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝐺 } ) ≠ ( 𝐿 ‘ { 𝐸 } ) ) |
| 80 |
1 14 2 3 7 8 9 13 16 57 70 6 12 20
|
mapdn0 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 81 |
1 14 2 3 7 8 9 13 16 64 67 6 12 21
|
mapdn0 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 82 |
9 11 12 49 13 77 17 78 79 80 81 10
|
baerlem5a |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) = ( ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐸 } ) ) ∩ ( ( 𝐿 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ( LSSum ‘ 𝐶 ) ( 𝐿 ‘ { 𝐺 } ) ) ) ) |
| 83 |
74 76 82
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐿 ‘ { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) ) |