Metamath Proof Explorer


Theorem hdmap1l6a

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, case 1. (Contributed by NM, 23-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6e.y φYV0˙
hdmap1l6e.z φZV0˙
hdmap1l6e.xn φ¬XNYZ
hdmap1l6.yz φNYNZ
hdmap1l6.fg φIXFY=G
hdmap1l6.fe φIXFZ=E
Assertion hdmap1l6a φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6e.y φYV0˙
21 hdmap1l6e.z φZV0˙
22 hdmap1l6e.xn φ¬XNYZ
23 hdmap1l6.yz φNYNZ
24 hdmap1l6.fg φIXFY=G
25 hdmap1l6.fe φIXFZ=E
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem2 φMNY+˙Z=LG˙E
27 24 25 oveq12d φIXFY˙IXFZ=G˙E
28 27 sneqd φIXFY˙IXFZ=G˙E
29 28 fveq2d φLIXFY˙IXFZ=LG˙E
30 26 29 eqtr4d φMNY+˙Z=LIXFY˙IXFZ
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem1 φMNX-˙Y+˙Z=LFRG˙E
32 27 oveq2d φFRIXFY˙IXFZ=FRG˙E
33 32 sneqd φFRIXFY˙IXFZ=FRG˙E
34 33 fveq2d φLFRIXFY˙IXFZ=LFRG˙E
35 31 34 eqtr4d φMNX-˙Y+˙Z=LFRIXFY˙IXFZ
36 1 2 16 dvhlmod φULMod
37 20 eldifad φYV
38 21 eldifad φZV
39 3 4 lmodvacl ULModYVZVY+˙ZV
40 36 37 38 39 syl3anc φY+˙ZV
41 3 4 6 7 36 37 38 23 lmodindp1 φY+˙Z0˙
42 eldifsn Y+˙ZV0˙Y+˙ZVY+˙Z0˙
43 40 41 42 sylanbrc φY+˙ZV0˙
44 1 8 16 lcdlmod φCLMod
45 1 2 16 dvhlvec φULVec
46 18 eldifad φXV
47 3 6 7 45 37 21 46 23 22 lspindp2 φNXNY¬ZNXY
48 47 simpld φNXNY
49 1 2 3 6 7 8 9 13 14 15 16 17 19 48 18 37 hdmap1cl φIXFYD
50 3 6 7 45 20 38 46 23 22 lspindp1 φNXNZ¬YNXZ
51 50 simpld φNXNZ
52 1 2 3 6 7 8 9 13 14 15 16 17 19 51 18 38 hdmap1cl φIXFZD
53 9 10 lmodvacl CLModIXFYDIXFZDIXFY˙IXFZD
54 44 49 52 53 syl3anc φIXFY˙IXFZD
55 eqid LSubSpU=LSubSpU
56 3 55 7 36 37 38 lspprcl φNYZLSubSpU
57 3 4 7 36 37 38 lspprvacl φY+˙ZNYZ
58 55 7 36 56 57 lspsnel5a φNY+˙ZNYZ
59 3 55 7 36 56 46 lspsnel5 φXNYZNXNYZ
60 22 59 mtbid φ¬NXNYZ
61 nssne2 NY+˙ZNYZ¬NXNYZNY+˙ZNX
62 58 60 61 syl2anc φNY+˙ZNX
63 62 necomd φNXNY+˙Z
64 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 43 54 63 19 hdmap1eq φIXFY+˙Z=IXFY˙IXFZMNY+˙Z=LIXFY˙IXFZMNX-˙Y+˙Z=LFRIXFY˙IXFZ
65 30 35 64 mpbir2and φIXFY+˙Z=IXFY˙IXFZ