Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nssne2 | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶 ) → 𝐴 ≠ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐶 ) ) |
| 3 | 2 | necon3bd | ⊢ ( 𝐴 ⊆ 𝐶 → ( ¬ 𝐵 ⊆ 𝐶 → 𝐴 ≠ 𝐵 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶 ) → 𝐴 ≠ 𝐵 ) |