Metamath Proof Explorer


Theorem hdmap1l6d

Description: Lemmma for hdmap1l6 . (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h
|- H = ( LHyp ` K )
hdmap1l6.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1l6.v
|- V = ( Base ` U )
hdmap1l6.p
|- .+ = ( +g ` U )
hdmap1l6.s
|- .- = ( -g ` U )
hdmap1l6c.o
|- .0. = ( 0g ` U )
hdmap1l6.n
|- N = ( LSpan ` U )
hdmap1l6.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1l6.d
|- D = ( Base ` C )
hdmap1l6.a
|- .+b = ( +g ` C )
hdmap1l6.r
|- R = ( -g ` C )
hdmap1l6.q
|- Q = ( 0g ` C )
hdmap1l6.l
|- L = ( LSpan ` C )
hdmap1l6.m
|- M = ( ( mapd ` K ) ` W )
hdmap1l6.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1l6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1l6.f
|- ( ph -> F e. D )
hdmap1l6cl.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1l6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
hdmap1l6d.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
hdmap1l6d.yz
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) )
hdmap1l6d.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap1l6d.z
|- ( ph -> Z e. ( V \ { .0. } ) )
hdmap1l6d.w
|- ( ph -> w e. ( V \ { .0. } ) )
hdmap1l6d.wn
|- ( ph -> -. w e. ( N ` { X , Y } ) )
Assertion hdmap1l6d
|- ( ph -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h
 |-  H = ( LHyp ` K )
2 hdmap1l6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1l6.v
 |-  V = ( Base ` U )
4 hdmap1l6.p
 |-  .+ = ( +g ` U )
5 hdmap1l6.s
 |-  .- = ( -g ` U )
6 hdmap1l6c.o
 |-  .0. = ( 0g ` U )
7 hdmap1l6.n
 |-  N = ( LSpan ` U )
8 hdmap1l6.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hdmap1l6.d
 |-  D = ( Base ` C )
10 hdmap1l6.a
 |-  .+b = ( +g ` C )
11 hdmap1l6.r
 |-  R = ( -g ` C )
12 hdmap1l6.q
 |-  Q = ( 0g ` C )
13 hdmap1l6.l
 |-  L = ( LSpan ` C )
14 hdmap1l6.m
 |-  M = ( ( mapd ` K ) ` W )
15 hdmap1l6.i
 |-  I = ( ( HDMap1 ` K ) ` W )
16 hdmap1l6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap1l6.f
 |-  ( ph -> F e. D )
18 hdmap1l6cl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 hdmap1l6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 hdmap1l6d.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
21 hdmap1l6d.yz
 |-  ( ph -> ( N ` { Y } ) = ( N ` { Z } ) )
22 hdmap1l6d.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
23 hdmap1l6d.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
24 hdmap1l6d.w
 |-  ( ph -> w e. ( V \ { .0. } ) )
25 hdmap1l6d.wn
 |-  ( ph -> -. w e. ( N ` { X , Y } ) )
26 1 8 16 lcdlmod
 |-  ( ph -> C e. LMod )
27 1 2 16 dvhlvec
 |-  ( ph -> U e. LVec )
28 24 eldifad
 |-  ( ph -> w e. V )
29 18 eldifad
 |-  ( ph -> X e. V )
30 22 eldifad
 |-  ( ph -> Y e. V )
31 3 7 27 28 29 30 25 lspindpi
 |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { Y } ) ) )
32 31 simpld
 |-  ( ph -> ( N ` { w } ) =/= ( N ` { X } ) )
33 32 necomd
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { w } ) )
34 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 28 hdmap1cl
 |-  ( ph -> ( I ` <. X , F , w >. ) e. D )
35 9 10 12 lmod0vrid
 |-  ( ( C e. LMod /\ ( I ` <. X , F , w >. ) e. D ) -> ( ( I ` <. X , F , w >. ) .+b Q ) = ( I ` <. X , F , w >. ) )
36 26 34 35 syl2anc
 |-  ( ph -> ( ( I ` <. X , F , w >. ) .+b Q ) = ( I ` <. X , F , w >. ) )
37 36 adantr
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( ( I ` <. X , F , w >. ) .+b Q ) = ( I ` <. X , F , w >. ) )
38 oteq3
 |-  ( ( Y .+ Z ) = .0. -> <. X , F , ( Y .+ Z ) >. = <. X , F , .0. >. )
39 38 fveq2d
 |-  ( ( Y .+ Z ) = .0. -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( I ` <. X , F , .0. >. ) )
40 1 2 3 6 8 9 12 15 16 17 29 hdmap1val0
 |-  ( ph -> ( I ` <. X , F , .0. >. ) = Q )
41 39 40 sylan9eqr
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = Q )
42 41 oveq2d
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) = ( ( I ` <. X , F , w >. ) .+b Q ) )
43 oveq2
 |-  ( ( Y .+ Z ) = .0. -> ( w .+ ( Y .+ Z ) ) = ( w .+ .0. ) )
44 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
45 3 4 6 lmod0vrid
 |-  ( ( U e. LMod /\ w e. V ) -> ( w .+ .0. ) = w )
46 44 28 45 syl2anc
 |-  ( ph -> ( w .+ .0. ) = w )
47 43 46 sylan9eqr
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( w .+ ( Y .+ Z ) ) = w )
48 47 oteq3d
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> <. X , F , ( w .+ ( Y .+ Z ) ) >. = <. X , F , w >. )
49 48 fveq2d
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( I ` <. X , F , w >. ) )
50 37 42 49 3eqtr4rd
 |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) )
51 16 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( K e. HL /\ W e. H ) )
52 17 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> F e. D )
53 18 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> X e. ( V \ { .0. } ) )
54 19 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
55 24 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> w e. ( V \ { .0. } ) )
56 23 eldifad
 |-  ( ph -> Z e. V )
57 3 4 lmodvacl
 |-  ( ( U e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V )
58 44 30 56 57 syl3anc
 |-  ( ph -> ( Y .+ Z ) e. V )
59 58 anim1i
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( ( Y .+ Z ) e. V /\ ( Y .+ Z ) =/= .0. ) )
60 eldifsn
 |-  ( ( Y .+ Z ) e. ( V \ { .0. } ) <-> ( ( Y .+ Z ) e. V /\ ( Y .+ Z ) =/= .0. ) )
61 59 60 sylibr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( Y .+ Z ) e. ( V \ { .0. } ) )
62 3 7 27 29 30 56 20 lspindpi
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) )
63 62 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
64 3 4 6 7 27 18 22 23 24 21 63 25 mapdindp1
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) )
65 3 4 6 7 27 18 22 23 24 21 63 25 mapdindp2
 |-  ( ph -> -. w e. ( N ` { X , ( Y .+ Z ) } ) )
66 3 6 7 27 18 58 28 64 65 lspindp1
 |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) /\ -. X e. ( N ` { w , ( Y .+ Z ) } ) ) )
67 66 simprd
 |-  ( ph -> -. X e. ( N ` { w , ( Y .+ Z ) } ) )
68 67 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> -. X e. ( N ` { w , ( Y .+ Z ) } ) )
69 31 simprd
 |-  ( ph -> ( N ` { w } ) =/= ( N ` { Y } ) )
70 3 6 7 27 24 30 69 lspsnne1
 |-  ( ph -> -. w e. ( N ` { Y } ) )
71 eqid
 |-  ( LSSum ` U ) = ( LSSum ` U )
72 3 7 71 44 30 56 lsmpr
 |-  ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) )
73 21 oveq2d
 |-  ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) )
74 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
75 3 74 7 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
76 44 30 75 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
77 74 lsssubg
 |-  ( ( U e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` U ) ) -> ( N ` { Y } ) e. ( SubGrp ` U ) )
78 44 76 77 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( SubGrp ` U ) )
79 71 lsmidm
 |-  ( ( N ` { Y } ) e. ( SubGrp ` U ) -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( N ` { Y } ) )
80 78 79 syl
 |-  ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( N ` { Y } ) )
81 72 73 80 3eqtr2d
 |-  ( ph -> ( N ` { Y , Z } ) = ( N ` { Y } ) )
82 70 81 neleqtrrd
 |-  ( ph -> -. w e. ( N ` { Y , Z } ) )
83 3 4 7 44 30 56 28 82 lspindp4
 |-  ( ph -> -. w e. ( N ` { Y , ( Y .+ Z ) } ) )
84 3 7 27 28 30 58 83 lspindpi
 |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { Y } ) /\ ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) ) )
85 84 simprd
 |-  ( ph -> ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) )
86 85 adantr
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) )
87 eqidd
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( I ` <. X , F , w >. ) = ( I ` <. X , F , w >. ) )
88 eqidd
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( I ` <. X , F , ( Y .+ Z ) >. ) )
89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 51 52 53 54 55 61 68 86 87 88 hdmap1l6a
 |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) )
90 50 89 pm2.61dane
 |-  ( ph -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) )