| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1l6.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap1l6.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap1l6.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap1l6.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap1l6.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | hdmap1l6c.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap1l6.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap1l6.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hdmap1l6.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hdmap1l6.a |  |-  .+b = ( +g ` C ) | 
						
							| 11 |  | hdmap1l6.r |  |-  R = ( -g ` C ) | 
						
							| 12 |  | hdmap1l6.q |  |-  Q = ( 0g ` C ) | 
						
							| 13 |  | hdmap1l6.l |  |-  L = ( LSpan ` C ) | 
						
							| 14 |  | hdmap1l6.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 15 |  | hdmap1l6.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 16 |  | hdmap1l6.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap1l6.f |  |-  ( ph -> F e. D ) | 
						
							| 18 |  | hdmap1l6cl.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap1l6.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 20 |  | hdmap1l6d.xn |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 21 |  | hdmap1l6d.yz |  |-  ( ph -> ( N ` { Y } ) = ( N ` { Z } ) ) | 
						
							| 22 |  | hdmap1l6d.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 23 |  | hdmap1l6d.z |  |-  ( ph -> Z e. ( V \ { .0. } ) ) | 
						
							| 24 |  | hdmap1l6d.w |  |-  ( ph -> w e. ( V \ { .0. } ) ) | 
						
							| 25 |  | hdmap1l6d.wn |  |-  ( ph -> -. w e. ( N ` { X , Y } ) ) | 
						
							| 26 | 1 8 16 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 27 | 1 2 16 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 28 | 24 | eldifad |  |-  ( ph -> w e. V ) | 
						
							| 29 | 18 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 30 | 22 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 31 | 3 7 27 28 29 30 25 | lspindpi |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { Y } ) ) ) | 
						
							| 32 | 31 | simpld |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { X } ) ) | 
						
							| 33 | 32 | necomd |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { w } ) ) | 
						
							| 34 | 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 28 | hdmap1cl |  |-  ( ph -> ( I ` <. X , F , w >. ) e. D ) | 
						
							| 35 | 9 10 12 | lmod0vrid |  |-  ( ( C e. LMod /\ ( I ` <. X , F , w >. ) e. D ) -> ( ( I ` <. X , F , w >. ) .+b Q ) = ( I ` <. X , F , w >. ) ) | 
						
							| 36 | 26 34 35 | syl2anc |  |-  ( ph -> ( ( I ` <. X , F , w >. ) .+b Q ) = ( I ` <. X , F , w >. ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( ( I ` <. X , F , w >. ) .+b Q ) = ( I ` <. X , F , w >. ) ) | 
						
							| 38 |  | oteq3 |  |-  ( ( Y .+ Z ) = .0. -> <. X , F , ( Y .+ Z ) >. = <. X , F , .0. >. ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( Y .+ Z ) = .0. -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( I ` <. X , F , .0. >. ) ) | 
						
							| 40 | 1 2 3 6 8 9 12 15 16 17 29 | hdmap1val0 |  |-  ( ph -> ( I ` <. X , F , .0. >. ) = Q ) | 
						
							| 41 | 39 40 | sylan9eqr |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = Q ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) = ( ( I ` <. X , F , w >. ) .+b Q ) ) | 
						
							| 43 |  | oveq2 |  |-  ( ( Y .+ Z ) = .0. -> ( w .+ ( Y .+ Z ) ) = ( w .+ .0. ) ) | 
						
							| 44 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 45 | 3 4 6 | lmod0vrid |  |-  ( ( U e. LMod /\ w e. V ) -> ( w .+ .0. ) = w ) | 
						
							| 46 | 44 28 45 | syl2anc |  |-  ( ph -> ( w .+ .0. ) = w ) | 
						
							| 47 | 43 46 | sylan9eqr |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( w .+ ( Y .+ Z ) ) = w ) | 
						
							| 48 | 47 | oteq3d |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> <. X , F , ( w .+ ( Y .+ Z ) ) >. = <. X , F , w >. ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( I ` <. X , F , w >. ) ) | 
						
							| 50 | 37 42 49 | 3eqtr4rd |  |-  ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) ) | 
						
							| 51 | 16 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 52 | 17 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> F e. D ) | 
						
							| 53 | 18 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> X e. ( V \ { .0. } ) ) | 
						
							| 54 | 19 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) | 
						
							| 55 | 24 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> w e. ( V \ { .0. } ) ) | 
						
							| 56 | 23 | eldifad |  |-  ( ph -> Z e. V ) | 
						
							| 57 | 3 4 | lmodvacl |  |-  ( ( U e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V ) | 
						
							| 58 | 44 30 56 57 | syl3anc |  |-  ( ph -> ( Y .+ Z ) e. V ) | 
						
							| 59 | 58 | anim1i |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( ( Y .+ Z ) e. V /\ ( Y .+ Z ) =/= .0. ) ) | 
						
							| 60 |  | eldifsn |  |-  ( ( Y .+ Z ) e. ( V \ { .0. } ) <-> ( ( Y .+ Z ) e. V /\ ( Y .+ Z ) =/= .0. ) ) | 
						
							| 61 | 59 60 | sylibr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( Y .+ Z ) e. ( V \ { .0. } ) ) | 
						
							| 62 | 3 7 27 29 30 56 20 | lspindpi |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) | 
						
							| 63 | 62 | simpld |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 64 | 3 4 6 7 27 18 22 23 24 21 63 25 | mapdindp1 |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) ) | 
						
							| 65 | 3 4 6 7 27 18 22 23 24 21 63 25 | mapdindp2 |  |-  ( ph -> -. w e. ( N ` { X , ( Y .+ Z ) } ) ) | 
						
							| 66 | 3 6 7 27 18 58 28 64 65 | lspindp1 |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) /\ -. X e. ( N ` { w , ( Y .+ Z ) } ) ) ) | 
						
							| 67 | 66 | simprd |  |-  ( ph -> -. X e. ( N ` { w , ( Y .+ Z ) } ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> -. X e. ( N ` { w , ( Y .+ Z ) } ) ) | 
						
							| 69 | 31 | simprd |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { Y } ) ) | 
						
							| 70 | 3 6 7 27 24 30 69 | lspsnne1 |  |-  ( ph -> -. w e. ( N ` { Y } ) ) | 
						
							| 71 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 72 | 3 7 71 44 30 56 | lsmpr |  |-  ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) | 
						
							| 73 | 21 | oveq2d |  |-  ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) | 
						
							| 74 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 75 | 3 74 7 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 76 | 44 30 75 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 77 | 74 | lsssubg |  |-  ( ( U e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` U ) ) -> ( N ` { Y } ) e. ( SubGrp ` U ) ) | 
						
							| 78 | 44 76 77 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( SubGrp ` U ) ) | 
						
							| 79 | 71 | lsmidm |  |-  ( ( N ` { Y } ) e. ( SubGrp ` U ) -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( N ` { Y } ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Y } ) ) = ( N ` { Y } ) ) | 
						
							| 81 | 72 73 80 | 3eqtr2d |  |-  ( ph -> ( N ` { Y , Z } ) = ( N ` { Y } ) ) | 
						
							| 82 | 70 81 | neleqtrrd |  |-  ( ph -> -. w e. ( N ` { Y , Z } ) ) | 
						
							| 83 | 3 4 7 44 30 56 28 82 | lspindp4 |  |-  ( ph -> -. w e. ( N ` { Y , ( Y .+ Z ) } ) ) | 
						
							| 84 | 3 7 27 28 30 58 83 | lspindpi |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { Y } ) /\ ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) ) ) | 
						
							| 85 | 84 | simprd |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( N ` { w } ) =/= ( N ` { ( Y .+ Z ) } ) ) | 
						
							| 87 |  | eqidd |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( I ` <. X , F , w >. ) = ( I ` <. X , F , w >. ) ) | 
						
							| 88 |  | eqidd |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( I ` <. X , F , ( Y .+ Z ) >. ) ) | 
						
							| 89 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 51 52 53 54 55 61 68 86 87 88 | hdmap1l6a |  |-  ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) ) | 
						
							| 90 | 50 89 | pm2.61dane |  |-  ( ph -> ( I ` <. X , F , ( w .+ ( Y .+ Z ) ) >. ) = ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) ) |