Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp1.v |
|- V = ( Base ` W ) |
2 |
|
mapdindp1.p |
|- .+ = ( +g ` W ) |
3 |
|
mapdindp1.o |
|- .0. = ( 0g ` W ) |
4 |
|
mapdindp1.n |
|- N = ( LSpan ` W ) |
5 |
|
mapdindp1.w |
|- ( ph -> W e. LVec ) |
6 |
|
mapdindp1.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
7 |
|
mapdindp1.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
8 |
|
mapdindp1.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
9 |
|
mapdindp1.W |
|- ( ph -> w e. ( V \ { .0. } ) ) |
10 |
|
mapdindp1.e |
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) ) |
11 |
|
mapdindp1.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
12 |
|
mapdindp1.f |
|- ( ph -> -. w e. ( N ` { X , Y } ) ) |
13 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
14 |
6 13
|
syl |
|- ( ph -> X =/= .0. ) |
15 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
16 |
5 15
|
syl |
|- ( ph -> W e. LMod ) |
17 |
3 4
|
lspsn0 |
|- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
18 |
16 17
|
syl |
|- ( ph -> ( N ` { .0. } ) = { .0. } ) |
19 |
18
|
eqeq2d |
|- ( ph -> ( ( N ` { X } ) = ( N ` { .0. } ) <-> ( N ` { X } ) = { .0. } ) ) |
20 |
6
|
eldifad |
|- ( ph -> X e. V ) |
21 |
1 3 4
|
lspsneq0 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
22 |
16 20 21
|
syl2anc |
|- ( ph -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
23 |
19 22
|
bitrd |
|- ( ph -> ( ( N ` { X } ) = ( N ` { .0. } ) <-> X = .0. ) ) |
24 |
23
|
necon3bid |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { .0. } ) <-> X =/= .0. ) ) |
25 |
14 24
|
mpbird |
|- ( ph -> ( N ` { X } ) =/= ( N ` { .0. } ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( N ` { X } ) =/= ( N ` { .0. } ) ) |
27 |
|
sneq |
|- ( ( Y .+ Z ) = .0. -> { ( Y .+ Z ) } = { .0. } ) |
28 |
27
|
fveq2d |
|- ( ( Y .+ Z ) = .0. -> ( N ` { ( Y .+ Z ) } ) = ( N ` { .0. } ) ) |
29 |
28
|
adantl |
|- ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( N ` { ( Y .+ Z ) } ) = ( N ` { .0. } ) ) |
30 |
26 29
|
neeqtrrd |
|- ( ( ph /\ ( Y .+ Z ) = .0. ) -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) ) |
31 |
11
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
32 |
5
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> W e. LVec ) |
33 |
6
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> X e. ( V \ { .0. } ) ) |
34 |
7
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> Y e. ( V \ { .0. } ) ) |
35 |
8
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> Z e. ( V \ { .0. } ) ) |
36 |
9
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> w e. ( V \ { .0. } ) ) |
37 |
10
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( N ` { Y } ) = ( N ` { Z } ) ) |
38 |
12
|
adantr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> -. w e. ( N ` { X , Y } ) ) |
39 |
|
simpr |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( Y .+ Z ) =/= .0. ) |
40 |
1 2 3 4 32 33 34 35 36 37 31 38 39
|
mapdindp0 |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( N ` { ( Y .+ Z ) } ) = ( N ` { Y } ) ) |
41 |
31 40
|
neeqtrrd |
|- ( ( ph /\ ( Y .+ Z ) =/= .0. ) -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) ) |
42 |
30 41
|
pm2.61dane |
|- ( ph -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) ) |