Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
mapdindp1.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
mapdindp1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
mapdindp1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
5 |
|
mapdindp1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
mapdindp1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
7 |
|
mapdindp1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
8 |
|
mapdindp1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
9 |
|
mapdindp1.W |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
10 |
|
mapdindp1.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
11 |
|
mapdindp1.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
12 |
|
mapdindp1.f |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
13 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
15 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
17 |
3 4
|
lspsn0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
19 |
18
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
20 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
21 |
1 3 4
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
22 |
16 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
23 |
19 22
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ↔ 𝑋 = 0 ) ) |
24 |
23
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 0 } ) ↔ 𝑋 ≠ 0 ) ) |
25 |
14 24
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 0 } ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 0 } ) ) |
27 |
|
sneq |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → { ( 𝑌 + 𝑍 ) } = { 0 } ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 0 } ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 0 } ) ) |
30 |
26 29
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
31 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑊 ∈ LVec ) |
33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
34 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
36 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
37 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
38 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑌 + 𝑍 ) ≠ 0 ) |
40 |
1 2 3 4 32 33 34 35 36 37 31 38 39
|
mapdindp0 |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
41 |
31 40
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
42 |
30 41
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |