| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdindp1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
mapdindp1.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
mapdindp1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
mapdindp1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
mapdindp1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
mapdindp1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 7 |
|
mapdindp1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 8 |
|
mapdindp1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 9 |
|
mapdindp1.W |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 10 |
|
mapdindp1.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
| 11 |
|
mapdindp1.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 |
|
mapdindp1.f |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 13 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 15 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 17 |
3 4
|
lspsn0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
| 20 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 21 |
1 3 4
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 22 |
16 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 23 |
19 22
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ↔ 𝑋 = 0 ) ) |
| 24 |
23
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 0 } ) ↔ 𝑋 ≠ 0 ) ) |
| 25 |
14 24
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 0 } ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 0 } ) ) |
| 27 |
|
sneq |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → { ( 𝑌 + 𝑍 ) } = { 0 } ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝑌 + 𝑍 ) = 0 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 0 } ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 0 } ) ) |
| 30 |
26 29
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
| 31 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑊 ∈ LVec ) |
| 33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 34 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 36 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 37 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
| 38 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑌 + 𝑍 ) ≠ 0 ) |
| 40 |
1 2 3 4 32 33 34 35 36 37 31 38 39
|
mapdindp0 |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 41 |
31 40
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
| 42 |
30 41
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |