Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
mapdindp1.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
mapdindp1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
mapdindp1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
5 |
|
mapdindp1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
mapdindp1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
7 |
|
mapdindp1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
8 |
|
mapdindp1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
9 |
|
mapdindp1.W |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
10 |
|
mapdindp1.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
11 |
|
mapdindp1.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
12 |
|
mapdindp1.f |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
13 |
|
mapdindp1.yz |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ≠ 0 ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
15 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
17 |
7
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
18 |
1 14 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
20 |
10 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
21 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
22 |
14 21
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
23 |
16 19 20 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
24 |
14
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
25 |
16 24
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
26 |
25 19
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
27 |
10 26
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
28 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
29 |
16 17 28
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
30 |
8
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
31 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
32 |
16 30 31
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
33 |
2 21
|
lsmelvali |
⊢ ( ( ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ∧ 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) → ( 𝑌 + 𝑍 ) ∈ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
34 |
26 27 29 32 33
|
syl22anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
35 |
14 4 16 23 34
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
36 |
10
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
37 |
21
|
lsmidm |
⊢ ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
38 |
26 37
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
39 |
36 38
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
40 |
35 39
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
41 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
42 |
16 17 30 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
43 |
|
eldifsn |
⊢ ( ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑌 + 𝑍 ) ∈ 𝑉 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) ) |
44 |
42 13 43
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
45 |
1 3 4 5 44 17
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
46 |
40 45
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |