Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp1.v |
|- V = ( Base ` W ) |
2 |
|
mapdindp1.p |
|- .+ = ( +g ` W ) |
3 |
|
mapdindp1.o |
|- .0. = ( 0g ` W ) |
4 |
|
mapdindp1.n |
|- N = ( LSpan ` W ) |
5 |
|
mapdindp1.w |
|- ( ph -> W e. LVec ) |
6 |
|
mapdindp1.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
7 |
|
mapdindp1.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
8 |
|
mapdindp1.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
9 |
|
mapdindp1.W |
|- ( ph -> w e. ( V \ { .0. } ) ) |
10 |
|
mapdindp1.e |
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) ) |
11 |
|
mapdindp1.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
12 |
|
mapdindp1.f |
|- ( ph -> -. w e. ( N ` { X , Y } ) ) |
13 |
|
mapdindp1.yz |
|- ( ph -> ( Y .+ Z ) =/= .0. ) |
14 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
15 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
16 |
5 15
|
syl |
|- ( ph -> W e. LMod ) |
17 |
7
|
eldifad |
|- ( ph -> Y e. V ) |
18 |
1 14 4
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
19 |
16 17 18
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
20 |
10 19
|
eqeltrrd |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
21 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
22 |
14 21
|
lsmcl |
|- ( ( W e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` W ) /\ ( N ` { Z } ) e. ( LSubSp ` W ) ) -> ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) e. ( LSubSp ` W ) ) |
23 |
16 19 20 22
|
syl3anc |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) e. ( LSubSp ` W ) ) |
24 |
14
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
25 |
16 24
|
syl |
|- ( ph -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
26 |
25 19
|
sseldd |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
27 |
10 26
|
eqeltrrd |
|- ( ph -> ( N ` { Z } ) e. ( SubGrp ` W ) ) |
28 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ Y e. V ) -> Y e. ( N ` { Y } ) ) |
29 |
16 17 28
|
syl2anc |
|- ( ph -> Y e. ( N ` { Y } ) ) |
30 |
8
|
eldifad |
|- ( ph -> Z e. V ) |
31 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ Z e. V ) -> Z e. ( N ` { Z } ) ) |
32 |
16 30 31
|
syl2anc |
|- ( ph -> Z e. ( N ` { Z } ) ) |
33 |
2 21
|
lsmelvali |
|- ( ( ( ( N ` { Y } ) e. ( SubGrp ` W ) /\ ( N ` { Z } ) e. ( SubGrp ` W ) ) /\ ( Y e. ( N ` { Y } ) /\ Z e. ( N ` { Z } ) ) ) -> ( Y .+ Z ) e. ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
34 |
26 27 29 32 33
|
syl22anc |
|- ( ph -> ( Y .+ Z ) e. ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
35 |
14 4 16 23 34
|
lspsnel5a |
|- ( ph -> ( N ` { ( Y .+ Z ) } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
36 |
10
|
oveq2d |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
37 |
21
|
lsmidm |
|- ( ( N ` { Y } ) e. ( SubGrp ` W ) -> ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` { Y } ) ) |
38 |
26 37
|
syl |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` { Y } ) ) |
39 |
36 38
|
eqtr3d |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) = ( N ` { Y } ) ) |
40 |
35 39
|
sseqtrd |
|- ( ph -> ( N ` { ( Y .+ Z ) } ) C_ ( N ` { Y } ) ) |
41 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V ) |
42 |
16 17 30 41
|
syl3anc |
|- ( ph -> ( Y .+ Z ) e. V ) |
43 |
|
eldifsn |
|- ( ( Y .+ Z ) e. ( V \ { .0. } ) <-> ( ( Y .+ Z ) e. V /\ ( Y .+ Z ) =/= .0. ) ) |
44 |
42 13 43
|
sylanbrc |
|- ( ph -> ( Y .+ Z ) e. ( V \ { .0. } ) ) |
45 |
1 3 4 5 44 17
|
lspsncmp |
|- ( ph -> ( ( N ` { ( Y .+ Z ) } ) C_ ( N ` { Y } ) <-> ( N ` { ( Y .+ Z ) } ) = ( N ` { Y } ) ) ) |
46 |
40 45
|
mpbid |
|- ( ph -> ( N ` { ( Y .+ Z ) } ) = ( N ` { Y } ) ) |