Metamath Proof Explorer


Theorem hdmap1l6e

Description: Lemmma for hdmap1l6 . Part (6) in Baer p. 47 line 38. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h
|- H = ( LHyp ` K )
hdmap1l6.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1l6.v
|- V = ( Base ` U )
hdmap1l6.p
|- .+ = ( +g ` U )
hdmap1l6.s
|- .- = ( -g ` U )
hdmap1l6c.o
|- .0. = ( 0g ` U )
hdmap1l6.n
|- N = ( LSpan ` U )
hdmap1l6.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1l6.d
|- D = ( Base ` C )
hdmap1l6.a
|- .+b = ( +g ` C )
hdmap1l6.r
|- R = ( -g ` C )
hdmap1l6.q
|- Q = ( 0g ` C )
hdmap1l6.l
|- L = ( LSpan ` C )
hdmap1l6.m
|- M = ( ( mapd ` K ) ` W )
hdmap1l6.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1l6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1l6.f
|- ( ph -> F e. D )
hdmap1l6cl.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1l6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
hdmap1l6d.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
hdmap1l6d.yz
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) )
hdmap1l6d.y
|- ( ph -> Y e. ( V \ { .0. } ) )
hdmap1l6d.z
|- ( ph -> Z e. ( V \ { .0. } ) )
hdmap1l6d.w
|- ( ph -> w e. ( V \ { .0. } ) )
hdmap1l6d.wn
|- ( ph -> -. w e. ( N ` { X , Y } ) )
Assertion hdmap1l6e
|- ( ph -> ( I ` <. X , F , ( ( w .+ Y ) .+ Z ) >. ) = ( ( I ` <. X , F , ( w .+ Y ) >. ) .+b ( I ` <. X , F , Z >. ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h
 |-  H = ( LHyp ` K )
2 hdmap1l6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1l6.v
 |-  V = ( Base ` U )
4 hdmap1l6.p
 |-  .+ = ( +g ` U )
5 hdmap1l6.s
 |-  .- = ( -g ` U )
6 hdmap1l6c.o
 |-  .0. = ( 0g ` U )
7 hdmap1l6.n
 |-  N = ( LSpan ` U )
8 hdmap1l6.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hdmap1l6.d
 |-  D = ( Base ` C )
10 hdmap1l6.a
 |-  .+b = ( +g ` C )
11 hdmap1l6.r
 |-  R = ( -g ` C )
12 hdmap1l6.q
 |-  Q = ( 0g ` C )
13 hdmap1l6.l
 |-  L = ( LSpan ` C )
14 hdmap1l6.m
 |-  M = ( ( mapd ` K ) ` W )
15 hdmap1l6.i
 |-  I = ( ( HDMap1 ` K ) ` W )
16 hdmap1l6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap1l6.f
 |-  ( ph -> F e. D )
18 hdmap1l6cl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 hdmap1l6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 hdmap1l6d.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
21 hdmap1l6d.yz
 |-  ( ph -> ( N ` { Y } ) = ( N ` { Z } ) )
22 hdmap1l6d.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
23 hdmap1l6d.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
24 hdmap1l6d.w
 |-  ( ph -> w e. ( V \ { .0. } ) )
25 hdmap1l6d.wn
 |-  ( ph -> -. w e. ( N ` { X , Y } ) )
26 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
27 24 eldifad
 |-  ( ph -> w e. V )
28 22 eldifad
 |-  ( ph -> Y e. V )
29 3 4 lmodvacl
 |-  ( ( U e. LMod /\ w e. V /\ Y e. V ) -> ( w .+ Y ) e. V )
30 26 27 28 29 syl3anc
 |-  ( ph -> ( w .+ Y ) e. V )
31 1 2 16 dvhlvec
 |-  ( ph -> U e. LVec )
32 18 eldifad
 |-  ( ph -> X e. V )
33 3 7 31 27 32 28 25 lspindpi
 |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { Y } ) ) )
34 33 simprd
 |-  ( ph -> ( N ` { w } ) =/= ( N ` { Y } ) )
35 3 4 6 7 26 27 28 34 lmodindp1
 |-  ( ph -> ( w .+ Y ) =/= .0. )
36 eldifsn
 |-  ( ( w .+ Y ) e. ( V \ { .0. } ) <-> ( ( w .+ Y ) e. V /\ ( w .+ Y ) =/= .0. ) )
37 30 35 36 sylanbrc
 |-  ( ph -> ( w .+ Y ) e. ( V \ { .0. } ) )
38 23 eldifad
 |-  ( ph -> Z e. V )
39 3 7 31 32 28 38 20 lspindpi
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) )
40 39 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
41 3 4 6 7 31 18 22 23 24 21 40 25 mapdindp3
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( w .+ Y ) } ) )
42 3 4 6 7 31 18 22 23 24 21 40 25 mapdindp4
 |-  ( ph -> -. Z e. ( N ` { X , ( w .+ Y ) } ) )
43 3 6 7 31 18 30 38 41 42 lspindp1
 |-  ( ph -> ( ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) /\ -. X e. ( N ` { Z , ( w .+ Y ) } ) ) )
44 43 simprd
 |-  ( ph -> -. X e. ( N ` { Z , ( w .+ Y ) } ) )
45 prcom
 |-  { ( w .+ Y ) , Z } = { Z , ( w .+ Y ) }
46 45 fveq2i
 |-  ( N ` { ( w .+ Y ) , Z } ) = ( N ` { Z , ( w .+ Y ) } )
47 46 eleq2i
 |-  ( X e. ( N ` { ( w .+ Y ) , Z } ) <-> X e. ( N ` { Z , ( w .+ Y ) } ) )
48 44 47 sylnibr
 |-  ( ph -> -. X e. ( N ` { ( w .+ Y ) , Z } ) )
49 3 7 31 38 32 30 42 lspindpi
 |-  ( ph -> ( ( N ` { Z } ) =/= ( N ` { X } ) /\ ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) ) )
50 49 simprd
 |-  ( ph -> ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) )
51 50 necomd
 |-  ( ph -> ( N ` { ( w .+ Y ) } ) =/= ( N ` { Z } ) )
52 eqidd
 |-  ( ph -> ( I ` <. X , F , ( w .+ Y ) >. ) = ( I ` <. X , F , ( w .+ Y ) >. ) )
53 eqidd
 |-  ( ph -> ( I ` <. X , F , Z >. ) = ( I ` <. X , F , Z >. ) )
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 23 48 51 52 53 hdmap1l6a
 |-  ( ph -> ( I ` <. X , F , ( ( w .+ Y ) .+ Z ) >. ) = ( ( I ` <. X , F , ( w .+ Y ) >. ) .+b ( I ` <. X , F , Z >. ) ) )