Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1l6.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1l6.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1l6.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1l6.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmap1l6.s |
|- .- = ( -g ` U ) |
6 |
|
hdmap1l6c.o |
|- .0. = ( 0g ` U ) |
7 |
|
hdmap1l6.n |
|- N = ( LSpan ` U ) |
8 |
|
hdmap1l6.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hdmap1l6.d |
|- D = ( Base ` C ) |
10 |
|
hdmap1l6.a |
|- .+b = ( +g ` C ) |
11 |
|
hdmap1l6.r |
|- R = ( -g ` C ) |
12 |
|
hdmap1l6.q |
|- Q = ( 0g ` C ) |
13 |
|
hdmap1l6.l |
|- L = ( LSpan ` C ) |
14 |
|
hdmap1l6.m |
|- M = ( ( mapd ` K ) ` W ) |
15 |
|
hdmap1l6.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
16 |
|
hdmap1l6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap1l6.f |
|- ( ph -> F e. D ) |
18 |
|
hdmap1l6cl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
19 |
|
hdmap1l6.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
20 |
|
hdmap1l6d.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
21 |
|
hdmap1l6d.yz |
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) ) |
22 |
|
hdmap1l6d.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
23 |
|
hdmap1l6d.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
24 |
|
hdmap1l6d.w |
|- ( ph -> w e. ( V \ { .0. } ) ) |
25 |
|
hdmap1l6d.wn |
|- ( ph -> -. w e. ( N ` { X , Y } ) ) |
26 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
27 |
24
|
eldifad |
|- ( ph -> w e. V ) |
28 |
22
|
eldifad |
|- ( ph -> Y e. V ) |
29 |
3 4
|
lmodvacl |
|- ( ( U e. LMod /\ w e. V /\ Y e. V ) -> ( w .+ Y ) e. V ) |
30 |
26 27 28 29
|
syl3anc |
|- ( ph -> ( w .+ Y ) e. V ) |
31 |
1 2 16
|
dvhlvec |
|- ( ph -> U e. LVec ) |
32 |
18
|
eldifad |
|- ( ph -> X e. V ) |
33 |
3 7 31 27 32 28 25
|
lspindpi |
|- ( ph -> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { Y } ) ) ) |
34 |
33
|
simprd |
|- ( ph -> ( N ` { w } ) =/= ( N ` { Y } ) ) |
35 |
3 4 6 7 26 27 28 34
|
lmodindp1 |
|- ( ph -> ( w .+ Y ) =/= .0. ) |
36 |
|
eldifsn |
|- ( ( w .+ Y ) e. ( V \ { .0. } ) <-> ( ( w .+ Y ) e. V /\ ( w .+ Y ) =/= .0. ) ) |
37 |
30 35 36
|
sylanbrc |
|- ( ph -> ( w .+ Y ) e. ( V \ { .0. } ) ) |
38 |
23
|
eldifad |
|- ( ph -> Z e. V ) |
39 |
3 7 31 32 28 38 20
|
lspindpi |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) |
40 |
39
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
41 |
3 4 6 7 31 18 22 23 24 21 40 25
|
mapdindp3 |
|- ( ph -> ( N ` { X } ) =/= ( N ` { ( w .+ Y ) } ) ) |
42 |
3 4 6 7 31 18 22 23 24 21 40 25
|
mapdindp4 |
|- ( ph -> -. Z e. ( N ` { X , ( w .+ Y ) } ) ) |
43 |
3 6 7 31 18 30 38 41 42
|
lspindp1 |
|- ( ph -> ( ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) /\ -. X e. ( N ` { Z , ( w .+ Y ) } ) ) ) |
44 |
43
|
simprd |
|- ( ph -> -. X e. ( N ` { Z , ( w .+ Y ) } ) ) |
45 |
|
prcom |
|- { ( w .+ Y ) , Z } = { Z , ( w .+ Y ) } |
46 |
45
|
fveq2i |
|- ( N ` { ( w .+ Y ) , Z } ) = ( N ` { Z , ( w .+ Y ) } ) |
47 |
46
|
eleq2i |
|- ( X e. ( N ` { ( w .+ Y ) , Z } ) <-> X e. ( N ` { Z , ( w .+ Y ) } ) ) |
48 |
44 47
|
sylnibr |
|- ( ph -> -. X e. ( N ` { ( w .+ Y ) , Z } ) ) |
49 |
3 7 31 38 32 30 42
|
lspindpi |
|- ( ph -> ( ( N ` { Z } ) =/= ( N ` { X } ) /\ ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) ) ) |
50 |
49
|
simprd |
|- ( ph -> ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) ) |
51 |
50
|
necomd |
|- ( ph -> ( N ` { ( w .+ Y ) } ) =/= ( N ` { Z } ) ) |
52 |
|
eqidd |
|- ( ph -> ( I ` <. X , F , ( w .+ Y ) >. ) = ( I ` <. X , F , ( w .+ Y ) >. ) ) |
53 |
|
eqidd |
|- ( ph -> ( I ` <. X , F , Z >. ) = ( I ` <. X , F , Z >. ) ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 23 48 51 52 53
|
hdmap1l6a |
|- ( ph -> ( I ` <. X , F , ( ( w .+ Y ) .+ Z ) >. ) = ( ( I ` <. X , F , ( w .+ Y ) >. ) .+b ( I ` <. X , F , Z >. ) ) ) |