| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdindp1.v |
|- V = ( Base ` W ) |
| 2 |
|
mapdindp1.p |
|- .+ = ( +g ` W ) |
| 3 |
|
mapdindp1.o |
|- .0. = ( 0g ` W ) |
| 4 |
|
mapdindp1.n |
|- N = ( LSpan ` W ) |
| 5 |
|
mapdindp1.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
mapdindp1.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 7 |
|
mapdindp1.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 8 |
|
mapdindp1.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 9 |
|
mapdindp1.W |
|- ( ph -> w e. ( V \ { .0. } ) ) |
| 10 |
|
mapdindp1.e |
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) ) |
| 11 |
|
mapdindp1.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 12 |
|
mapdindp1.f |
|- ( ph -> -. w e. ( N ` { X , Y } ) ) |
| 13 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 14 |
5 13
|
syl |
|- ( ph -> W e. LMod ) |
| 15 |
9
|
eldifad |
|- ( ph -> w e. V ) |
| 16 |
7
|
eldifad |
|- ( ph -> Y e. V ) |
| 17 |
1 2 4
|
lspvadd |
|- ( ( W e. LMod /\ w e. V /\ Y e. V ) -> ( N ` { ( w .+ Y ) } ) C_ ( N ` { w , Y } ) ) |
| 18 |
14 15 16 17
|
syl3anc |
|- ( ph -> ( N ` { ( w .+ Y ) } ) C_ ( N ` { w , Y } ) ) |
| 19 |
1 3 4 5 6 16 15 11 12
|
lspindp1 |
|- ( ph -> ( ( N ` { w } ) =/= ( N ` { Y } ) /\ -. X e. ( N ` { w , Y } ) ) ) |
| 20 |
19
|
simprd |
|- ( ph -> -. X e. ( N ` { w , Y } ) ) |
| 21 |
18 20
|
ssneldd |
|- ( ph -> -. X e. ( N ` { ( w .+ Y ) } ) ) |
| 22 |
6
|
eldifad |
|- ( ph -> X e. V ) |
| 23 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 24 |
14 22 23
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
| 25 |
|
eleq2 |
|- ( ( N ` { X } ) = ( N ` { ( w .+ Y ) } ) -> ( X e. ( N ` { X } ) <-> X e. ( N ` { ( w .+ Y ) } ) ) ) |
| 26 |
24 25
|
syl5ibcom |
|- ( ph -> ( ( N ` { X } ) = ( N ` { ( w .+ Y ) } ) -> X e. ( N ` { ( w .+ Y ) } ) ) ) |
| 27 |
26
|
necon3bd |
|- ( ph -> ( -. X e. ( N ` { ( w .+ Y ) } ) -> ( N ` { X } ) =/= ( N ` { ( w .+ Y ) } ) ) ) |
| 28 |
21 27
|
mpd |
|- ( ph -> ( N ` { X } ) =/= ( N ` { ( w .+ Y ) } ) ) |