Metamath Proof Explorer


Theorem mapdindp3

Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015)

Ref Expression
Hypotheses mapdindp1.v V=BaseW
mapdindp1.p +˙=+W
mapdindp1.o 0˙=0W
mapdindp1.n N=LSpanW
mapdindp1.w φWLVec
mapdindp1.x φXV0˙
mapdindp1.y φYV0˙
mapdindp1.z φZV0˙
mapdindp1.W φwV0˙
mapdindp1.e φNY=NZ
mapdindp1.ne φNXNY
mapdindp1.f φ¬wNXY
Assertion mapdindp3 φNXNw+˙Y

Proof

Step Hyp Ref Expression
1 mapdindp1.v V=BaseW
2 mapdindp1.p +˙=+W
3 mapdindp1.o 0˙=0W
4 mapdindp1.n N=LSpanW
5 mapdindp1.w φWLVec
6 mapdindp1.x φXV0˙
7 mapdindp1.y φYV0˙
8 mapdindp1.z φZV0˙
9 mapdindp1.W φwV0˙
10 mapdindp1.e φNY=NZ
11 mapdindp1.ne φNXNY
12 mapdindp1.f φ¬wNXY
13 lveclmod WLVecWLMod
14 5 13 syl φWLMod
15 9 eldifad φwV
16 7 eldifad φYV
17 1 2 4 lspvadd WLModwVYVNw+˙YNwY
18 14 15 16 17 syl3anc φNw+˙YNwY
19 1 3 4 5 6 16 15 11 12 lspindp1 φNwNY¬XNwY
20 19 simprd φ¬XNwY
21 18 20 ssneldd φ¬XNw+˙Y
22 6 eldifad φXV
23 1 4 lspsnid WLModXVXNX
24 14 22 23 syl2anc φXNX
25 eleq2 NX=Nw+˙YXNXXNw+˙Y
26 24 25 syl5ibcom φNX=Nw+˙YXNw+˙Y
27 26 necon3bd φ¬XNw+˙YNXNw+˙Y
28 21 27 mpd φNXNw+˙Y