Metamath Proof Explorer


Theorem hdmap1l6e

Description: Lemmma for hdmap1l6 . Part (6) in Baer p. 47 line 38. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6d.xn φ¬XNYZ
hdmap1l6d.yz φNY=NZ
hdmap1l6d.y φYV0˙
hdmap1l6d.z φZV0˙
hdmap1l6d.w φwV0˙
hdmap1l6d.wn φ¬wNXY
Assertion hdmap1l6e φIXFw+˙Y+˙Z=IXFw+˙Y˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6d.xn φ¬XNYZ
21 hdmap1l6d.yz φNY=NZ
22 hdmap1l6d.y φYV0˙
23 hdmap1l6d.z φZV0˙
24 hdmap1l6d.w φwV0˙
25 hdmap1l6d.wn φ¬wNXY
26 1 2 16 dvhlmod φULMod
27 24 eldifad φwV
28 22 eldifad φYV
29 3 4 lmodvacl ULModwVYVw+˙YV
30 26 27 28 29 syl3anc φw+˙YV
31 1 2 16 dvhlvec φULVec
32 18 eldifad φXV
33 3 7 31 27 32 28 25 lspindpi φNwNXNwNY
34 33 simprd φNwNY
35 3 4 6 7 26 27 28 34 lmodindp1 φw+˙Y0˙
36 eldifsn w+˙YV0˙w+˙YVw+˙Y0˙
37 30 35 36 sylanbrc φw+˙YV0˙
38 23 eldifad φZV
39 3 7 31 32 28 38 20 lspindpi φNXNYNXNZ
40 39 simpld φNXNY
41 3 4 6 7 31 18 22 23 24 21 40 25 mapdindp3 φNXNw+˙Y
42 3 4 6 7 31 18 22 23 24 21 40 25 mapdindp4 φ¬ZNXw+˙Y
43 3 6 7 31 18 30 38 41 42 lspindp1 φNZNw+˙Y¬XNZw+˙Y
44 43 simprd φ¬XNZw+˙Y
45 prcom w+˙YZ=Zw+˙Y
46 45 fveq2i Nw+˙YZ=NZw+˙Y
47 46 eleq2i XNw+˙YZXNZw+˙Y
48 44 47 sylnibr φ¬XNw+˙YZ
49 3 7 31 38 32 30 42 lspindpi φNZNXNZNw+˙Y
50 49 simprd φNZNw+˙Y
51 50 necomd φNw+˙YNZ
52 eqidd φIXFw+˙Y=IXFw+˙Y
53 eqidd φIXFZ=IXFZ
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 23 48 51 52 53 hdmap1l6a φIXFw+˙Y+˙Z=IXFw+˙Y˙IXFZ