Metamath Proof Explorer


Theorem hdmap1l6f

Description: Lemmma for hdmap1l6 . Part (6) in Baer p. 47 line 38. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6d.xn φ ¬ X N Y Z
hdmap1l6d.yz φ N Y = N Z
hdmap1l6d.y φ Y V 0 ˙
hdmap1l6d.z φ Z V 0 ˙
hdmap1l6d.w φ w V 0 ˙
hdmap1l6d.wn φ ¬ w N X Y
Assertion hdmap1l6f φ I X F w + ˙ Y = I X F w ˙ I X F Y

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6d.xn φ ¬ X N Y Z
21 hdmap1l6d.yz φ N Y = N Z
22 hdmap1l6d.y φ Y V 0 ˙
23 hdmap1l6d.z φ Z V 0 ˙
24 hdmap1l6d.w φ w V 0 ˙
25 hdmap1l6d.wn φ ¬ w N X Y
26 1 2 16 dvhlvec φ U LVec
27 22 eldifad φ Y V
28 24 eldifad φ w V
29 18 eldifad φ X V
30 23 eldifad φ Z V
31 3 7 26 29 27 30 20 lspindpi φ N X N Y N X N Z
32 31 simpld φ N X N Y
33 3 6 7 26 18 27 28 32 25 lspindp1 φ N w N Y ¬ X N w Y
34 33 simprd φ ¬ X N w Y
35 3 7 26 28 29 27 25 lspindpi φ N w N X N w N Y
36 35 simprd φ N w N Y
37 eqidd φ I X F w = I X F w
38 eqidd φ I X F Y = I X F Y
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 22 34 36 37 38 hdmap1l6a φ I X F w + ˙ Y = I X F w ˙ I X F Y