Metamath Proof Explorer


Theorem hdmap1l6g

Description: Lemmma for hdmap1l6 . Part (6) of Baer p. 47 line 39. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6d.xn φ ¬ X N Y Z
hdmap1l6d.yz φ N Y = N Z
hdmap1l6d.y φ Y V 0 ˙
hdmap1l6d.z φ Z V 0 ˙
hdmap1l6d.w φ w V 0 ˙
hdmap1l6d.wn φ ¬ w N X Y
Assertion hdmap1l6g φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6d.xn φ ¬ X N Y Z
21 hdmap1l6d.yz φ N Y = N Z
22 hdmap1l6d.y φ Y V 0 ˙
23 hdmap1l6d.z φ Z V 0 ˙
24 hdmap1l6d.w φ w V 0 ˙
25 hdmap1l6d.wn φ ¬ w N X Y
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6d φ I X F w + ˙ Y + ˙ Z = I X F w ˙ I X F Y + ˙ Z
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6e φ I X F w + ˙ Y + ˙ Z = I X F w + ˙ Y ˙ I X F Z
28 1 2 16 dvhlmod φ U LMod
29 24 eldifad φ w V
30 22 eldifad φ Y V
31 23 eldifad φ Z V
32 3 4 lmodass U LMod w V Y V Z V w + ˙ Y + ˙ Z = w + ˙ Y + ˙ Z
33 28 29 30 31 32 syl13anc φ w + ˙ Y + ˙ Z = w + ˙ Y + ˙ Z
34 33 oteq3d φ X F w + ˙ Y + ˙ Z = X F w + ˙ Y + ˙ Z
35 34 fveq2d φ I X F w + ˙ Y + ˙ Z = I X F w + ˙ Y + ˙ Z
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6f φ I X F w + ˙ Y = I X F w ˙ I X F Y
37 36 oveq1d φ I X F w + ˙ Y ˙ I X F Z = I X F w ˙ I X F Y ˙ I X F Z
38 27 35 37 3eqtr3d φ I X F w + ˙ Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z
39 26 38 eqtr3d φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z