Metamath Proof Explorer


Theorem hdmap1l6h

Description: Lemmma for hdmap1l6 . Part (6) of Baer p. 48 line 2. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6d.xn φ¬XNYZ
hdmap1l6d.yz φNY=NZ
hdmap1l6d.y φYV0˙
hdmap1l6d.z φZV0˙
hdmap1l6d.w φwV0˙
hdmap1l6d.wn φ¬wNXY
Assertion hdmap1l6h φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6d.xn φ¬XNYZ
21 hdmap1l6d.yz φNY=NZ
22 hdmap1l6d.y φYV0˙
23 hdmap1l6d.z φZV0˙
24 hdmap1l6d.w φwV0˙
25 hdmap1l6d.wn φ¬wNXY
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6g φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZ
27 1 8 16 lcdlmod φCLMod
28 1 2 16 dvhlvec φULVec
29 24 eldifad φwV
30 18 eldifad φXV
31 22 eldifad φYV
32 3 7 28 29 30 31 25 lspindpi φNwNXNwNY
33 32 simpld φNwNX
34 33 necomd φNXNw
35 1 2 3 6 7 8 9 13 14 15 16 17 19 34 18 29 hdmap1cl φIXFwD
36 23 eldifad φZV
37 3 7 28 30 31 36 20 lspindpi φNXNYNXNZ
38 37 simpld φNXNY
39 1 2 3 6 7 8 9 13 14 15 16 17 19 38 18 31 hdmap1cl φIXFYD
40 37 simprd φNXNZ
41 1 2 3 6 7 8 9 13 14 15 16 17 19 40 18 36 hdmap1cl φIXFZD
42 9 10 lmodass CLModIXFwDIXFYDIXFZDIXFw˙IXFY˙IXFZ=IXFw˙IXFY˙IXFZ
43 27 35 39 41 42 syl13anc φIXFw˙IXFY˙IXFZ=IXFw˙IXFY˙IXFZ
44 26 43 eqtrd φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZ
45 3 4 6 7 28 18 22 23 24 21 38 25 mapdindp1 φNXNY+˙Z
46 1 2 16 dvhlmod φULMod
47 3 4 lmodvacl ULModYVZVY+˙ZV
48 46 31 36 47 syl3anc φY+˙ZV
49 1 2 3 6 7 8 9 13 14 15 16 17 19 45 18 48 hdmap1cl φIXFY+˙ZD
50 9 10 lmodvacl CLModIXFYDIXFZDIXFY˙IXFZD
51 27 39 41 50 syl3anc φIXFY˙IXFZD
52 9 10 lmodlcan CLModIXFY+˙ZDIXFY˙IXFZDIXFwDIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZIXFY+˙Z=IXFY˙IXFZ
53 27 49 51 35 52 syl13anc φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZIXFY+˙Z=IXFY˙IXFZ
54 44 53 mpbid φIXFY+˙Z=IXFY˙IXFZ