Metamath Proof Explorer


Theorem hdmap1l6i

Description: Lemmma for hdmap1l6 . Eliminate auxiliary vector w . (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6i.xn φ¬XNYZ
hdmap1l6i.y φYV0˙
hdmap1l6i.z φZV0˙
hdmap1l6i.yz φNY=NZ
Assertion hdmap1l6i φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6i.xn φ¬XNYZ
21 hdmap1l6i.y φYV0˙
22 hdmap1l6i.z φZV0˙
23 hdmap1l6i.yz φNY=NZ
24 18 eldifad φXV
25 21 eldifad φYV
26 1 2 3 7 16 24 25 dvh3dim φwV¬wNXY
27 16 3ad2ant1 φwV¬wNXYKHLWH
28 17 3ad2ant1 φwV¬wNXYFD
29 18 3ad2ant1 φwV¬wNXYXV0˙
30 19 3ad2ant1 φwV¬wNXYMNX=LF
31 20 3ad2ant1 φwV¬wNXY¬XNYZ
32 23 3ad2ant1 φwV¬wNXYNY=NZ
33 21 3ad2ant1 φwV¬wNXYYV0˙
34 22 3ad2ant1 φwV¬wNXYZV0˙
35 eqid LSubSpU=LSubSpU
36 1 2 16 dvhlmod φULMod
37 36 3ad2ant1 φwV¬wNXYULMod
38 3 35 7 36 24 25 lspprcl φNXYLSubSpU
39 38 3ad2ant1 φwV¬wNXYNXYLSubSpU
40 simp2 φwV¬wNXYwV
41 simp3 φwV¬wNXY¬wNXY
42 6 35 37 39 40 41 lssneln0 φwV¬wNXYwV0˙
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 28 29 30 31 32 33 34 42 41 hdmap1l6h φwV¬wNXYIXFY+˙Z=IXFY˙IXFZ
44 43 rexlimdv3a φwV¬wNXYIXFY+˙Z=IXFY˙IXFZ
45 26 44 mpd φIXFY+˙Z=IXFY˙IXFZ