| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1l6.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1l6.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1l6.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1l6.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1l6.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap1l6c.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | hdmap1l6.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | hdmap1l6.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmap1l6.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hdmap1l6.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 11 |  | hdmap1l6.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 12 |  | hdmap1l6.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 13 |  | hdmap1l6.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 14 |  | hdmap1l6.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmap1l6.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap1l6.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap1l6.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 18 |  | hdmap1l6cl.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hdmap1l6.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 20 |  | hdmap1l6i.xn | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 21 |  | hdmap1l6i.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 22 |  | hdmap1l6i.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 23 |  | hdmap1l6i.yz | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 24 | 18 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 25 | 21 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 26 | 1 2 3 7 16 24 25 | dvh3dim | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  𝑉 ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 27 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 28 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝐹  ∈  𝐷 ) | 
						
							| 29 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 30 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 31 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 32 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 33 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 34 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 35 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 36 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑈  ∈  LMod ) | 
						
							| 38 | 3 35 7 36 24 25 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 | 38 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 40 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑤  ∈  𝑉 ) | 
						
							| 41 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 42 | 6 35 37 39 40 41 | lssneln0 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 28 29 30 31 32 33 34 42 41 | hdmap1l6h | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑉  ∧  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) | 
						
							| 44 | 43 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  𝑉 ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) ) | 
						
							| 45 | 26 44 | mpd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) |