Metamath Proof Explorer


Theorem hdmap1l6i

Description: Lemmma for hdmap1l6 . Eliminate auxiliary vector w . (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1l6.p + = ( +g𝑈 )
hdmap1l6.s = ( -g𝑈 )
hdmap1l6c.o 0 = ( 0g𝑈 )
hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1l6.a = ( +g𝐶 )
hdmap1l6.r 𝑅 = ( -g𝐶 )
hdmap1l6.q 𝑄 = ( 0g𝐶 )
hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1l6.f ( 𝜑𝐹𝐷 )
hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1l6i.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
hdmap1l6i.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6i.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6i.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
Assertion hdmap1l6i ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1l6.p + = ( +g𝑈 )
5 hdmap1l6.s = ( -g𝑈 )
6 hdmap1l6c.o 0 = ( 0g𝑈 )
7 hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
8 hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
10 hdmap1l6.a = ( +g𝐶 )
11 hdmap1l6.r 𝑅 = ( -g𝐶 )
12 hdmap1l6.q 𝑄 = ( 0g𝐶 )
13 hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
14 hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
15 hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap1l6.f ( 𝜑𝐹𝐷 )
18 hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
20 hdmap1l6i.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
21 hdmap1l6i.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
22 hdmap1l6i.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
23 hdmap1l6i.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
24 18 eldifad ( 𝜑𝑋𝑉 )
25 21 eldifad ( 𝜑𝑌𝑉 )
26 1 2 3 7 16 24 25 dvh3dim ( 𝜑 → ∃ 𝑤𝑉 ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
27 16 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 17 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝐹𝐷 )
29 18 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
30 19 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
31 20 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
32 23 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
33 21 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
34 22 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
35 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
36 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
37 36 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑈 ∈ LMod )
38 3 35 7 36 24 25 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
39 38 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
40 simp2 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑤𝑉 )
41 simp3 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
42 6 35 37 39 40 41 lssneln0 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 28 29 30 31 32 33 34 42 41 hdmap1l6h ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )
44 43 rexlimdv3a ( 𝜑 → ( ∃ 𝑤𝑉 ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
45 26 44 mpd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )