| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap1l6.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap1l6.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap1l6.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap1l6.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap1l6.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap1l6c.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | hdmap1l6.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | hdmap1l6.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmap1l6.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hdmap1l6.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 11 |  | hdmap1l6.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 12 |  | hdmap1l6.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 13 |  | hdmap1l6.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 14 |  | hdmap1l6.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmap1l6.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap1l6.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap1l6.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 18 |  | hdmap1l6cl.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hdmap1l6.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 20 |  | hdmap1l6i.xn | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 21 |  | hdmap1l6i.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 22 |  | hdmap1l6i.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 23 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 24 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  𝐹  ∈  𝐷 ) | 
						
							| 25 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 26 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 27 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 28 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 29 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29 30 | hdmap1l6i | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) | 
						
							| 32 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 33 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  𝐹  ∈  𝐷 ) | 
						
							| 34 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 35 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐿 ‘ { 𝐹 } ) ) | 
						
							| 36 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 37 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 38 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 40 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 ) ) | 
						
							| 41 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 | hdmap1l6a | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) | 
						
							| 43 | 31 42 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑍 〉 ) ) ) |