Metamath Proof Explorer


Theorem hdmap1l6j

Description: Lemmma for hdmap1l6 . Eliminate ( N { Y } ) = ( N { Z } ) hypothesis. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6i.xn φ¬XNYZ
hdmap1l6i.y φYV0˙
hdmap1l6i.z φZV0˙
Assertion hdmap1l6j φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6i.xn φ¬XNYZ
21 hdmap1l6i.y φYV0˙
22 hdmap1l6i.z φZV0˙
23 16 adantr φNY=NZKHLWH
24 17 adantr φNY=NZFD
25 18 adantr φNY=NZXV0˙
26 19 adantr φNY=NZMNX=LF
27 20 adantr φNY=NZ¬XNYZ
28 21 adantr φNY=NZYV0˙
29 22 adantr φNY=NZZV0˙
30 simpr φNY=NZNY=NZ
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29 30 hdmap1l6i φNY=NZIXFY+˙Z=IXFY˙IXFZ
32 16 adantr φNYNZKHLWH
33 17 adantr φNYNZFD
34 18 adantr φNYNZXV0˙
35 19 adantr φNYNZMNX=LF
36 21 adantr φNYNZYV0˙
37 22 adantr φNYNZZV0˙
38 20 adantr φNYNZ¬XNYZ
39 simpr φNYNZNYNZ
40 eqidd φNYNZIXFY=IXFY
41 eqidd φNYNZIXFZ=IXFZ
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 hdmap1l6a φNYNZIXFY+˙Z=IXFY˙IXFZ
43 31 42 pm2.61dane φIXFY+˙Z=IXFY˙IXFZ